Traceability Comments. (11/30/2007)
Julio Garrido Campos (jgarri@uvigo.es)
Vigo University

Index

1. Traceability Conclusions and Comments from last teleconference.
2. Detailed Explanation of Group I/11/111 traceability nc_functions.
3. Proposed actions for telecom comments.

1. Traceability Conclusions and Comments from
last teleconference.

a. Need for more Administrative data collection capabilities (for
NC_planning processing) ?.

b. Other machinning Data for GROUP Il nc_functions (torque, current,...)
c. Need to be aware of manual operator actions like “overrides” ?.
d. Need for a WS time “maximum” or “expected” execution placeholder*

in a similar way as there is maximum toolpath deviation value
placeholder in AP-238?

2. Detailed Explanation of Group I/
traceability nc_functions.

a. Group I nc_functions: Just insert them in the executable structure, get a
SINGLE value, and “update” an AP-238 nc_variable (or log the value
and the workingstep to a file).

executable program i
flow with group | —d get_time lm(4,77, nc_variable }
modal traceability nc_functions

machining
T AR A) e e
workinsgteps) B id10461 @ FM -> display message
B 10466 FM -» dizplap message
P 10471 = FM <> display message
P id10476 ; FM -» digplaw message
after value ikl B 10788 WS > line 33WS5 1
is collected traceabiliy ST — . :
execution nc_functions | 1420000 -+ gettime
flow continues P id20734 WS - lime 123WE 2 - PART ONE
b 1430000 FM -» start moritoning max dey. position
Beod20794 WS o line T23W5 2 - PaRT TWwWi
140000 FM -» stop ranitansg mas dew. posiion
B 40734 WS - line 123WS 2 PART THREE
machining - 1id50000: FM -» gettime
T B id10800 WS - line 337 WS 3
workinsgteps) P id10806 - WS - line 4035 4
b id10812 %S - line 7495 5
l o d10B1E WS 5 line 1271 WS B
B d10828 WS - line 1327 WS 7
machining
action
(nc_function or
workinsgteps)

b. Group [Il/lIl nc_functions: ARM model includes OPTIONAL
Attributes, and depending on the presence or not of this attributes, the
function is a group Il or group 111 function.

The main difference between GROUP Il and GROUP III functions, is
that GROUP |1 functions are thought to COLLECT/LOG data, while
GROUP Il extend GROUP Il functionality to test a specified
“condition” and perform some actions depending on the tested condition
(and data storage/loging is also optional).

ARM model example for “get_maximum_deviation_position_along_toolpath”:

—q stan:_measuring_maximum_deviation_position_aIong_roolpath|

_ measured for (™3 34 (ABS) toolpath
11 maximum_deviation_values L[0:7] lts data d | 34 (ABS) toolpa
--- resu a measured_results
its_threshold_value - = 41,27 bounded_curve
---------------- { 27 A3, length_measure)
ts_acti
LIBATONE 3,59, (ABS) workplan

—d stop_measuring_maximurn_deviation_position_along_toclpath I

This is the generic model, where:

maximum_deviation_values L[0:?] is used to store in AP-238 a
bounded curve, series of collected values (per toolpath and following the
same parametrization as the corresponding workingstep toolpath).
its_threshold_value is used only if nc_function acts as a group Il
function to specify a threshold value for the comparing/triggering
condition.

its_actions is an alternative workplan (a series of actions) to be done in
case the specified condition is fulfilled (just for group I11).

Example for GROUP Il function use...

executable program
flow with group Il

non-modal traceability nc_functions
e = B id111E7 WP -x main workplan

P id10467 FN > display meszage
. B 10466 FN > dizplay message
m:i:}:,:"g B idi0471 o FN - dizplay message
(nc_function or P id10476 0 FN > dizplay message
workinsgteps) B idI07E3 WS -5 ine 33WS5
P id20000: FN > gettime
START P id20734 WS o line 1235 2 PART OME
a concurrent g I 130000 - FN - start monitonng max derv. position
traceability -
START process is S B d30734 WS ne 123WS 2- PART Twl
(swicth OdNI) created traceabiliy — B idd0000:: FY > stop monitoring max dery. position
tareabily — actions B 079 WS 5 Ine 123'WS 2-PART THREE
nc_functions EE B zsiT B idSO000 - PN < get time
B id10800 WS -3 line 337 WS 3
P id10806 WS -3 line 403 W5 4
machining T simple toolpath trajectory (composite segment for example)
action traceability Tool Path End
(nc_function or actions recorded o
workinsgteps) (data collection) value code Block G1
recorded
recorded GEM value
code Block G1
GEM
STOP
STOP the concurrent concurrent codaBlock G2
switch OFF; -
: non-maodal) E’ iral:e_ahlllty SQE:: Block G1
traceability actions ;
nc_function {data collection) Tool path Start

Data Placeholder Structuras in AP-238 for collected Data

_q start_measuring_maximum_deviation_position_along_tool pathl

e
! maximum_deviation_values L[0:7] 11,34 (ABS) toclpath
' results_data measured_results
_41,27 bounded_curve

Example for GROUP |11 function use...

executable program
flow with group Il
non-modal traceability nc_functions

machining
action
(nc_function or
workinsgteps)

ACTIVATE

non-modal —— CONTINUOSLY
Synchronous + CHECK
nc_functions condition

until
STOP
monitoring function
is executed

machining

action —
(nc_function or
workingsteps)

condition
reached?

start

machining concurrent
action traceabiliy
{nc_functio or or execute
workingstep) _ altemative
actions (alarms,stop..
compensation)

=

id11187 WP -» main workplan

id10461 = FMN -> display meszage

jd1046E = FN <> display message

id10471 = FM > dizplay message

id1047G5 = Fi <> display message

10788 WS - fne 33W5 1

20000 FM - get bime

20794 WS e e 123WS 2- PART OME
id30000 :: iti
d307ad
id40000 -
0734 WS -r ne 123WS 2 -PART THREE
ida0000 - FN - -» get time

10800 - WS - ne 337 W5 3

10806 - WS - line 4035 4

art monitonng max desw.
WS - ine T23WS 2- PART Twi
“FMN > stop monitoning masx desw. position

YT VYTV VP VYT VVIYFVYYTYTTYTY

simple toolpath trajectory (composite segment for example)
Tool Path End

GEM
code Block G1

may deviation
monitored during

all toolpath

(each interpolation cycle) GEM
code Block G1

GEM
code Block G2

GEM
code Block G1

Tool path Start
= NO

Inath| !

jon_along_

3. Proposed Actions for telecom comments ...

Comment a: Administrative Data (through GROUP | functions):

With Group | function for accessing punctual values, the “get_sensor”
data, if allowed to access internal CNC registers, could be used to
gather a information, (at least from 840d CNC variables) like:

Machine NCK version (SAN_NCK_VERSION)
Program Name ($P_PROG[0])

Machine Runtime (SAC_OPERATING_TIME)
Program Runtime (3AC_CYCLE_TIME)
Operation Time (SAC_CUTTING_TIME)

Tool Data, Tool/Axis Offsets

There can be done using for example the *“get sensor_data”
nc_function, but to log these values the following alternatives could be
proposed:

1. Making the sensor_value optional, so it could be specified that
if not present, the value is written into a log file, but will not be into the
AP-238 data.

2. Why ?. Because for some of this values, are STRINGS, TIME
VALUES and it will be necessary to enhance the AP-238 concept of
nc_variable.

3. Also there is work to do about the specification for the
“sensor_id” attribute.

—CI get_sensor_data ||< 4,77, nc_variable }
sensor_value

[sensor_id p I

Comment b:
Other machining Data for GROUP Il nc functions:

There are other interesting data that even it can be accessed using the
Group Il “star_monitoring_ _sensor_data”, if used also to access
internal CNC registers, like:

% Drive LOAD ($AA_LOADIX]).

TORQUE ($AA_TORQUE[X]),
POWER ($AA_POWER[X]),
CURRENT ($AA_CURR[X]) ...

However, one question for these, and maybe other similar data, as
they are measured by AXIS, is if logging should include all axis by
defect, or it should be explored the possibility to specify which axis to
monitor ?

Comment c:

Need to be aware of operator actions like “overrides”?. Synchronous
traceability data collection” vs. “traceability of CNC asynchronous
events

From comments, it seems interesting to detect and record Operator
actions like feed/spindle overrides. These are completely asynchronous with
program execution, so during a workingstep or tool path execution, the
operator could have “played” with the override hand wheels. To record this,
there is an internal CNC register (in 840D) that control and calculates the
applied override before each interpolation cycle.

So changing the selected “sensor”, the
“start_monitoring_sensor_along_toolpath” concept could be applied to have a
ONE value per toolpath segment/ G&M code Block monitoring of the
operator actions on the overrides handwheels.

AVALIABLE 840d Varaibles:
$AC_OVR (active path/federate override)
$AC_DRF (axial override value <caused by the
handwheel)
(other values for total override, $AA TOTAL_OVR[ax] =
PLC_OVR*NC_OVR, could also be accessed if considered
as better alternatives ..)

The idea could be as follows:

Monitor any of these variables with a group-11/111 like nc_functions
(or using the already proposed
“start_monitoring_sensor_along_toolpath”), during G-code block
execution, log the maximum values (SINGLE VALUE LOG
APPROACH)

—q start_montoring_sensor_data_along_toolpath | —C1 start_montoring_feed_override_along_toolpath |

P sensor_id 111

P d STRING] HH

pooisensorvalueslfon) T iy ovemide valueslo:F]
{ | fstheshold valve =~~~ d R] |._max override allowed o AL]

i its_actions i its_actions

———————————————————————————————— 3,59, (AB5) workplan b e e {0 3,59, (ABS) workplan

simple toolpath trajectory (composite segment for example)
Workingstep End

) GEM
miaK_override
valua for code Block G1
this segment max_overide
max_override oL
= GEM this segmant
::::":Emr'nem code Block G “
g . GLM
.'. code Block G2
‘.‘ » M a%_override
GEM \ + valuafor
code BlockG1 %, % thissegment
Workingstep Start ! i
120 \ '-, during each segment, the operator could have

touch several times the override wheel, so with this
apporach, only one value (the maximum)is recorded

Override
Positi
osition

-

segment 1 | segment 2 ' toolpath execution

Another option, depending on the amount of data that could be allocated
in the NC-Controller, could be to use a data structure (for example a
FIFO ($AC_FIFO on 840d) to log several override values per segment,
allowing to record an N_NUMBER (the bigger ones) of operator
override values.

Also from this asynchronous event perspective, it seems interesting,
logging other kind of events, as CNC mode changes, so monitoring the
$AC_PROG variable could be important to detect if the program has
been reset(0), stopped(1), is active (2), waiting (3) or interrupted (4).
More to explore on this are operations performed on MANUAL mode,
and how to log them

Comment d:
The get time functions ...

The objective could be to have a reference value to compare it with the
time as collected by two get_time nc_functions and take the necessary
actions ...

to have a refence time

== roughing #E1537 . .
for execution time

rj: #1896-planarface - facing ‘WS 1'WS 1 #51545
Get_time (start) - r‘: #2107-clozed rectangular pocket WS 2'WS 2 #52003 /

Get_time (end) .. rj:(ﬂﬂ 29-closed rectangular pocket WS 3'WS 3 #ER1 BEI}
Vi #2151 -closed rectangular pocket WS 4'wS 4 #70915
rj: B2173-cloged rectangular pocket WS 5WwWS & #7663
r‘: #2213-0pen rectangular pocket - main operation 'S 6 WS B #20803
rj: B2257-zlot - open pocket WS FWS T #32760

Options for setting this maximum execution time for the workingstep,
similar as the maximum_path_deviation present in AP-238 tool path, to
compare collected values. This could be solved in two ways:

1. By adding a execution_time value (expected maximum time) as and
optional attribute to the AP-238 workingstep entity ...

its_execution_time
g s ..-O. real

47,43, elementary_surface _-)

(ABS)workingstep

its_secplane

1
'—(4, 3, (ABS)touch_probing)

(5, 2, rapid_maowvement)

2. But also with a group 111 nc_function,

—Ci start_monitoring_sensor_data_along_toolpath |

o sensor_id
P STRING | |
111 sensor_values L[0:F]
|t thresholdalue i]
i its_actions
lmmmmmes s mesee e eeeeeaeaa 3, 59, (ABS) workplan

—d stop_maonitoring_sensor_data_along_toolpath |

H
measured for [0000 Feeem e e

[11,34 (ABS) toolpath
results_data

measured_results

L M

(41,27 bounded_curve

figure 3

SENSOR - if sensor, could also refer to an internal CNC
register/value, a TIMER could be used. Then a programmed
“start_monitoring_sensor_along_toolpath” with sensor id -
“time”, and its_threshold value> “the maximum time”,
could do the work and optional, log/or not detailed time
execution for the workingstep (richer than start-end time, as
show in next figure).

However, a more appropriate function could be
“start_monitoring_time_execution_along_toolpath” (right
EXPRESS-G model)

—q start_montoring_sensor_data_along_toolpath |

—Cﬁ1 start_montoring_time_along_toolpath |

sensor_id

timer_id

| o sTNG] i o st]
! | sensor_values L[0:7] 111 timer_values L[0:7]
(I . -
{ | fstheshold valve =~~~ d R] | i_max execution time
i its_actions i its_actions

simple toolpath trajectory (composite segment for example) which data 7
Workingstep End
(timer resat) 4 :) . ™
log timar value G&M with Group | functions get_time,
or reset fmer code Block G1 WS_START — 10:23:45
= WS_END - 10:30:56
log timer_valua with Group Il functiens (Start_monitoring_sensor..)
: or resat_timer (if selacted sensor = intemal timer)
e GEM NO ABSOLUTE STARTTIME
- code Block G segment 1 time --00:02:34
&M Segment 2 time -- 00:02:00
code Block G2 segment 3 time -- 00:04:12
segment 4 time --00:01:34
GEM log timer_value MO ABSOLUTE END TIME
code Block G1 or reset_timer {also it could have been sepecified a treshold value or
maximum execution time)
Workingstep Start N /

(tirner starts)

G&M implementation approaches for the proposed case could
depend on: if the threshold (maximum execution time) refers to
the TOTAL tool path execution time or for each segments or for

the total workingstep

Pseudocode Threshold (valid as maximum time per
segment, logging incremental times for segment values)

N100 $AC_TIMER[1] = O ..
;RESET R[] variables
;R[1] WILL Hold the threshold value

;START SINCHRONYZED ACTION threshold set for each segment

ID=1 WHEN $R[1] < $AC_TIMER[1] DO (ACTION: stop, alararm ..

G1...

WRITE(“ERROR”,”LOGFILE”,”SEGMENT 1 TIME: “

$AC_TIMER[1]= O ;
G1..

WRITE(“ERROR”,”LOGFILE”,””SEGMENT 1 TIME: *

$AC_TIMER[1]= O ;
Gl..

CANCEL(1)

log data)

<< $AC_TIMER[1D);

<< $AC_TIMER[1]):

Pseudocode Threshold (valid as maximum time per
workingstep/toolpath, and logging absolute times for

segment values: note in this case timer is not reset after
each G block)

N100 $AC TIMER[1] = O ..
;RESET R[] variables

;R[1] WILL Hold the threshold value

;é%Aé%-éiNCHRONYZED ACTION threshold set for each segment

ID=1 WHEN $R[1] < $AC_TIMER[1] DO (ACTION: stop, alararm .. log data)

G1...
WRITE(*“ERROR”,”LOGFILE”,”SEGMENT 1 TIME: “ << $AC_TIMER[1]);

G1..
WRITE(“ERROR”,”LOGFILE”,”SEGMENT 1 TIME: “ << $AC_TIMER[1]);

G1..

CANCEL (1)

