INTERNATIONAL 1SO
STANDARD 10303-513

First edition
2000-09-01

Industrial automation systems and
integration — Product data representation
and exchange —

Part 513:
Application interpreted construct:
Elementary boundary representation

Systémes d'automatisation industrielle et intégration — Représentation et
échange de données de produits —

Partie 513: Construction interprétée d'application: Représentation des
limites élémentaires

Reference number
ISO 10303-513:2000(E)

©1S0 2000

ISO 10303-513:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© 1SO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

Contents Page
1 SCOPE . . o 1
2 Normative references e e e e 2
3 Terms, definitions, and abbreviations 2
3.1 Terms defined in ISO 10303-1... i i i e e 3
3.2 Terms defined in ISO 10303-42 i 3
3.3 Terms defined in ISO 10303-202 i i i 3
3.4 Terms defined in ISO 10303-514 i i 4
3.5 Other definitions 4
3.6 Abbreviations 4
4 EXPRESSshortlisting 4
4.1 Fundamental concepts and assumptions. 6
4.2 aic_elementary_brep schema entity definition: elementary_brep_shape_representation
Annex A (normative) Shortnamesofentities 12
Annex B (nhormative) Information object registration, 13
B.1 Documentidentification e e e e 13
B.2 Schemaidentification e 13
Annex C (informative) Computer-interpretable listings 14
Annex D (informative) EXPRESS-Gdiagrams 15
Annex E (informative) AIC conformance requirements and test purposes 20
E.1 AIC conformance requirements: elementaryB-rep 20
E.2 Test purposes for elementary B-rep AIC L. 21
E.3 Abstract test cases for elementaryB-rep oL 25
E.4 Contexts defined for test cases of elementaryB-rep 41
INdEX . . . 56
Figures

Figure D.1 aic_elementary_boundary_representation EXPRESS-G diagram, page 1 of.4 16
Figure D.2 aic_elementary_boundary_representation EXPRESS-G diagram, page 2 of.4 17
Figure D.3 aic_elementary_boundary_representation EXPRESS-G diagram, page 3 of.4 18
Figure D.4 aic_elementary_boundary_representation EXPRESS-G diagram, page 4 of.4 19

Tables

Table A.1 Short names of entities e e 12

(©1S0O 2000 — All rights reserved iii

7

ISO 10303-513:2000(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through 1SO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. 1SO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10303 may be the subject
of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard 1SO 10303-513 was prepared by Technical Committee ISO/Tdugstrial
automation systems and integration, Subcommittee SC 4, Indudrial data.

A complete list of parts of ISO 10303 is available from the Internet:
<http://www.nist.gov/sc4/editing/stepl/titles/>
This part of ISO 10303 is a member of the application interpreted constructs series.

AnnexesA and B form a normative part of this part of ISO 10303. Annexes C, D and E are for
information only.

iv (©1S0O 2000 — All rights reserved

1SO 10303-513:200(K)

Introdu ction

ISO 103 is an International Standard for the computer-interpretable representation and exchange of
prodwct data. The obijective is to provide a neutral mechanism cagpable of describing prodict data
throughot the lif e cycle of a prodict independent from any particular sysem. The nature of this de-
scription makes it suitable not only for neutral file exchange, but aso as a basis for implementing and
shering prodict databases and archiving.

This Internation& Standad is organizel as a series of parts ead publishal separatgl. The parts of
ISO 103@8 fall into one of the foll owing series: description methods integrated resouices, applicaion
interpreted constricts, application protacols, abstract test suites, implementation methods and confor-
mance testing The series are described in ISO 10303-1 This part of 1ISO 103 is a member of the
apdicationinterprded corstruct series.

An applicaion interpreted constrict (AIC) provides a logicd groupirng of interpreted constricts that
suppors a specific functionaity for the usage of prodict data acoss multiple applicaion contexts. An
interpreted constrict is a common interpretation of the integrated resouices that suppors shared infor-
mation requirements among applicaion protocols.

Thisdocument specifies the applicaion interpreted constrict for the definition of aboundary representa-
tion solid with elementary geometry and explicit topology.

©I1S0O 2000 — All rightsreserved %

INTERNATIONAL STANDARD ISO 10303-513:2000(E)

Industrial automation systems and integration —
Product data representation and exchange —
Part 513 :

Application interpreted construct:

Elementary boundary representation

1 Scope
This part of ISO 10303 specifies the interpretation of the generic resources for the definition of an ele-

mentary boundary representation model.
The following are within the scope of this part of ISO 10303:

— the definition of anelementary_brep_shape_representatignthis is a representation composed
of one or moremanifold_solid_breps each of which is defined with elementary geometry and
complete explicit topology;

— the definition of the unbounded geometry of curves andased used in the defiion of the faces
of such a B-rep model;

— the definition of the topological structure of a B-rep model;
— 3D geometry;

— B-reps;

— elementary curves, these dirges orconics;

— elementary_surfacs;

— geometric transformations;

— polylines;

— unbounded geometry;

— use of topology to bound geometric entities.

The following are outside the scope of this part of ISO 10303:
— 2D geometry;

— bounded curves other thaolylines;

— bounded surfaces;

(©I1S0O 2000 — All rights reserved 1

ISO 10303-513:2000(E)

— offset curves and surfaces.

This AIC is independent of any industrial application domain.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this part of ISO 10303. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this part of ISO 10303
are encouraged to investigate the possibility of applying the neasint edions of the normative docu-
ments indicated below. For undated references, the latest edition of the normative document referred to
applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO/IEC 8824-1: 1995|nformation technology - Abstract Syntax Notation One (ASN.1): Specification
of basic notation.

ISO 10303-1: 1994)ndustrial automation systems and integration - Product data representation and
exchange - Part 1 : Overview and fundamental principles.

ISO 10303-11: 1994|ndustrial automation systems and integration - Product data representation and
exchange - Part 11 : Description methods: The EXPRESS language reference manual.

ISO/TR 10303-12: 1997Industrial automation systems and integration - Product data representation
and exchange - Part 12 : Description methods: HX¥PRESS-language reference manual.

ISO 10303-41: 1994|ndustrial automation systems and integration - Product data representation and
exchange - Part 41 : Integrated generic resources: Fundamentals of product description and support.

ISO 10303-42: 1994|ndustrial automation systems and integration - Product data representation and
exchange - Part 42 : Integrated generic resources: Geometric and topological representation.

ISO 10303-43: 1994|ndustrial automation systems and integration - Product data representation and
exchange - Part 43 : Integrated generic resources: Representation structures.

ISO 10303-202: 1996lndustrial automation systems and integration - Product data representation and
exchange - Part 202: Application protocol: Associative draughting.

ISO 10303-514: 1999Industrial automation systems and integration - Product data representation and
exchange - Part 514: Application interpreted construct: Advanced boundary representation.

2 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

3 Terms, definitions, and abbreviations

3.1 Terms defined in ISO 10303-1

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-1 apply.
— application;

— application context;

— application protocaol,

— implementation method;

— integrated resource;

— interpretation;

— product data.

3.2 Terms defined in ISO 10303-42

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-42 apply.
— arcwise connected,;

— boundary;

— bounds;

— coordinate space;

— curve;

— open curve;

— orientable;

— surface;

— topological sense.
3.3 Terms defined in ISO 10303-202
For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-202 apply.

(©ISO 2000 — All rights reserved 3

ISO 10303-513:2000(E)

— AIC.

3.4 Terms defined in ISO 10303-514

For the purposes of this part of ISO 10303, the following terms defined in ISO 10303-514 apply.

— manifold solid.

3.5 Other definitions

For the purposes of this part of ISO 10303 the following definitions apply:

351

elementary B-rep shape representation

a shape representation made up of one or more manifold solid B-reps. Each constituent B-rep is required
to have its faces and edges defined by elementary geometry.

3.5.2
elementary geometry
geometry composed tihes, polylines, conics andelementary_surfaces.

3.6 Abbreviations

For the purposes of this part of ISO 10303, the following abbreviations apply:

AIC application interpreted construct
AP application protocol
B-rep boundary representation solid model

4 EXPRESS short listing

This clause specifies the EXPRESS schema that uses elements from the integrated resources and con-
tains the types, entity specializations, and functions that are specific to this part of ISO 10303.

NOTE 1 There may be subtypes and items of select lists that appear in the integrated resources that are not
imported into the AIC. Constructs are eliminated from the subtype tree or select list through the use of the implicit
interface rules of ISO 10303-11. References to eliminated constructs are outside the scope of the AIC. In some
cases, all items of the select list are eliminated. Because AICs are intended to be implemented in the context of an
application protocol, the items of the select list will be defined by the scope of the application protocol.

This application interpreted construct provides a consistent set of geometric and topological entities for

the definition of manifold solid models wittates having elementary geometry and exidefined
edges and vertices. The faces of the B-rep models are bounded by polylines, lines or conics.

4 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

The highest level entity in this AIC is thelementary_brep_shape_representationThis is ashape_-
representation (see: 1SO 10303-41) consisting wfanifold_solid_breps andmapped_itens defined
as translated or transformed copiesranifold_solid_breps having elementary geometry.

EXPRESS specification

*

)

SCHEMA aic_elementary_brep;

USE FROM geometry schema(axis2_placement_3d,
cartesian_point,
cartesian_transformation_operator_3d,
circle,
conical_surface,
cylindrical_surface,
degenerate_toroidal_surface,
direction,
ellipse,
hyperbola,
line,
parabola,
plane,
polyline,
spherical_surface,
toroidal_surface,
vector);

USE FROM geometric_model_schema(manifold_solid_brep,

brep_with_voids);

REFERENCE FROM geometric_model_schema(msb_shells);

USE FROM topology_schema(closed_shell,
connected_face_set,
edge_curve,
edge_loop,
face_bound,
face_outer_bound,
face_surface,
oriented_closed_shell,
vertex_loop,
vertex_point);

USE FROM representation_schema(mapped_item);
USE FROM product_property _representation_schema(shape_representation);

(*

(©ISO 2000 — All rights reserved 5

ISO 10303-513:2000(E)

NOTE 2 Theconnected_face_setntity is explicitly interficed (i.e. included in the USE FROM lists) to allow
rules in theelementary _brep_shape_representatioentity toaccess attributes of this##y. For the use of this
AIC this entity shall only be instantiated as one of its subtypes.

NOTE 3 The schemas referenced above can be found in the following parts of ISO 10303:

geometry_schema ISO 10303-42
geometric_model_schema ISO 10303-42
topology_schema ISO 10303-42
representation_schema ISO 10303-43
product_property representation_schema ISO 10303-41

4.1 Fundamental concepts and assumptions

The following entities are intended to be independently instantiated in the application protocol schemas
that use this AIC:

— axis2_placement_3d;

— brep_with_voids;

— cartesian_point;

— cartesian_transformation_operator_3d;
— circle;

— closed_shell;

— conical_surface;

— cylindrical_surface;

— degenerate_toroidal_surface;
— direction;

— edge_curve;

— edge_loop;

— elementary_face;

— ellipse;

— face_bound;

— face _outer_bound;

6 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

— face_surface;

— hyperbola;

— line;

— manifold_solid_brep;
— mapped_item;

— oriented_closed_shell;
— parabola;

— plane;

— polyline;

— representation_map;
— spherical_surface;
— toroidal_surface;

— vector;

— vertex_loop;

— vertex_point.

An application protocol that uses this AIC shall require that all the above entities are supported.

An application protocol that uses this AIC shall permitsh@pe_representatiorentity to be instantiated
as arelementary_brep_shape_representatian

4.2 aic_elementary_brep schema entity definition:
elementary _brep_shape_representation

The elementary_brep_shape_representatiotis a type ofshape_representationn which the repre-
sentation items are specialisationswdinifold_solid_brepentities. These differ from the more general
B-rep in having only explicit geometric forms for their faces and edges. The face geometry is restricted
to elementary_surface, and the edge curveslines, polylines orconics.

(©ISO 2000 — All rights reserved 7

ISO 10303-513:2000(E)

EXPRESS specification

*)
ENTITY elementary_brep_shape_representation
SUBTYPE OF (shape_representation);
WHERE
WR1 : SIZEOF (QUERY (it <* SELF.items |
NOT (SIZEOF (['AIC_ELEMENTARY_BREP.MANIFOLD SOLID BREP’,
'AIC_ELEMENTARY_BREP.FACETED_BREP’,
'AIC_ELEMENTARY_BREP.MAPPED_ITEM,
'AIC_ELEMENTARY_BREP.AXIS2_PLACEMENT 3D *
TYPEOF(it)) = 1))) = 0;

WR2 : SIZEOF (QUERY (it <* SELF.items |
SIZEOF('AIC_ELEMENTARY_BREP.MANIFOLD_SOLID_BREP’,
'AIC_ELEMENTARY_BREP.MAPPED_ITEM] * TYPEOF(it) =1)) > O;

WR3 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |

'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID _BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |
NOT (SIZEOF (QUERY(fcs <* csh.cfs_faces |
NOT(AIC_ELEMENTARY_BREP.FACE_SURFACE’ IN TYPEOF(fcs)))) = 0
)) =0
)) = 0;

WR4 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID_BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |

NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT(CAIC_ELEMENTARY_BREP.ELEMENTARY_SURFACE’ IN
TYPEOF(fcs\face_surface.face_geometry))
)) =0
)) =0
)) = 0;

WR5 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID_BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |

NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT (SIZEOF(QUERY (elp_fbnds <* QUERY (bnds <* fcs.bounds |
'AIC_ELEMENTARY_BREP.EDGE_LOOP’ IN TYPEOF(bnds.bound)) |
NOT (SIZEOF (QUERY (oe <* elp_fbnds.bound\path.edge list |
NOT(AIC_ELEMENTARY_BREP.EDGE_CURVE' IN
TYPEOF(oe.edge_element)))) = 0

) =0
)

0
) =
) = 0;
WR6 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID _BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |
NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT (SIZEOF(QUERY (elp_fbnds <* QUERY (bnds <* fcs.bounds |
'AIC_ELEMENTARY_BREP.EDGE_LOOP’ IN TYPEOF(bnds.bound)) |
NOT (SIZEOF (QUERY (oe <* elp_fbnds.bound\path.edge_list |

~—

0

~

8 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

NOT (SIZEOF ([AIC_ELEMENTARY_BREP.LINE,
'AIC_ELEMENTARY_BREP.CONIC’,
'AIC_ELEMENTARY_BREP.POLYLINE'] *

TYPEOF(oe.edge_element\edge_curve.edge_geometry)) = 1)
) =0
) =0
) =
) =0
)) =0
WR7 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID_BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |
NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT (SIZEOF(QUERY (elp_fbnds <* QUERY (bnds <* fcs.bounds |
'AIC_ELEMENTARY_BREP.EDGE_LOOP’ IN TYPEOF(bnds.bound)) |
NOT (SIZEOF (QUERY (oe <* elp_fbnds.bound\path.edge_list |
NOT(CAIC_ELEMENTARY_BREP.VERTEX_POINT' IN TYPEOF(oe.edge_start))
AND (AIC_ELEMENTARY_BREP.VERTEX_ POINT' IN
TYPEOF(oe.edge_end))
) =0
) =0
) =0
) =0
) =0
WRS8 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID _BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |
NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT (SIZEOF(QUERY (elp_fbnds <* QUERY (bnds <* fcs.bounds |
'AIC_ELEMENTARY_BREP.EDGE_LOOP’ IN TYPEOF(bnds.bound)) |
NOT (SIZEOF (QUERY (oe <* elp_fbnds.bound\path.edge list |
(CAIC_ELEMENTARY_BREP.POLYLINE' IN
TYPEOF(oe.edge_element\edge_curve.edge_geometry)) AND
(NOT (SIZEOF (oe\oriented_edge.edge_element\
edge_curve.edge_geometry\polyline.points) >= 3))

I o

) =
) =
)

no?®

N
I o

) 0

) = 0;

WR9 : SIZEOF (QUERY (msb <* QUERY (it <* items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID BREP’ IN TYPEOF(it)) |
'AIC_ELEMENTARY_BREP.ORIENTED_CLOSED_SHELL' IN TYPEOF

(msb\manifold_solid_brep.outer)))
= O,

WR10 : SIZEOF (QUERY (brv <* QUERY (it <* items |
'AIC_ELEMENTARY_BREP.BREP_WITH_VOIDS’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* brv\brep_with_voids.voids |
csh\oriented_closed_shell.orientation)) = 0))) = O;

WR11 : SIZEOF (QUERY (mi <* QUERY (it <* items |

'AIC_ELEMENTARY_BREP.MAPPED_ITEM’ IN TYPEOF(it)) |
NOT (AIC_ELEMENTARY_BREP.ELEMENTARY_BREP_SHAPE_REPRESENTATION’ IN

~—
~

(©ISO 2000 — All rights reserved 9

ISO 10303-513:2000(E)

TYPEOF(mi\mapped_item.mapping_source.
mapped_representation)))) = 0;
WR12 : SIZEOF (QUERY (msb <* QUERY (it <* SELF.items |
'AIC_ELEMENTARY_BREP.MANIFOLD_SOLID _BREP’ IN TYPEOF(it)) |
NOT (SIZEOF (QUERY (csh <* msb_shells(msb) |
NOT (SIZEOF (QUERY(fcs <* csh\connected_face_set.cfs_faces |
NOT (SIZEOF(QUERY (vlp_fbnds <* QUERY (bnds <* fcs.bounds |
'AIC_ELEMENTARY_BREP.VERTEX_LOOP’ IN TYPEOF(bnds.bound)) |
NOT(CAIC_ELEMENTARY_BREP.VERTEX_POINT" IN
TYPEOF(vip_fbnds\face_bound.bound\vertex_loop.loop_vertex)) AND
(CAIC_ELEMENTARY_BREP.CARTESIAN_POINT" IN
TYPEOF(vlp_fbnds\face_bound.bound\vertex_loop.
loop_vertex\vertex_point.vertex_geometry))
) = 0)) = 0)) = 0) =0;
END_ENTITY;

(*

Formal propositions

WR1: Theitemsattribute of theepresentationsupertype shall contamanifold_solid_breps,mapped_-
items andaxis2_placement_3d only. The use ofaceted_brefs is excluded by this rule since an in-
stance ofaceted_brepwould also be of typenanifold_solid_brep.

WR2: Atleast one item in th@éems set shall be ananifold_solid_brep entity or amapped_item(see
also WR11).

WR3: All faces used in constructingraanifold_solid_brepshall be of typdace_surface

NOTE 1 Thecalltofunctiomsb_shellsn WR3, and later rules, is correct since, although the generic type of the
argument ‘msb’ igepresentation_item ‘msb’ has been selected by QUERY to be of typanifold_solid_brep.

WR4: For eachmanifold_solid_brepin theitems set, the associated surface for each face shall be an
elementary_surface

WR5: For eachmanifold_solid_brepin theitems set, the edges used to define the boundaries shall all
be of typeedge_curve

WR6: For eachmanifold_solid_brepin theitems set, each curve used to define the face bounds shall
be either aonic, aline, or apolyline.

WRY7: For eachmanifold_solid_brepin theitems set, the edges used to define the boundaries shall all
be trimmed by vertices of typeertex_point.

WRS8: For eachmanifold_solid_brep in the items set, eactpolyline used to define part of the face
bounds shall contain 3 or more points.

WR9: For eachmanifold_solid_brep in the items set, the outer shell attribute shall not be of type
oriented_closed_shell

WR10: If a brep_with_voidsis included in thdtems set, each shell in theoids set shall be arori-
ented_closed_shellith orientation value FALSE.

10 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

WR11: If a mapped_itemis included in theitems set, themapped_representationof the map-
ping_sourceattribute shall be aplementary_brep_shape_representatian

NOTE If acartesian_transformation_operator_3dis included as

mapped_item.mapping_targetwith anaxis2_placement_3dhat corresponds to the original coordinate system
asmapped_representation.mapping_originthe resultingnapped_itemis a transformed copy of thdementary _-
brep_shape_representation The precise definition of the transformation, including translation, rotation, scaling
and, if appropriate, mirroring, is given by the transformation operator.

WR12: For eachmanifold_solid_brepin theitems set, anyvertex_loopused to define a face bound
shall reference gertex_point with the geometry defined byaartesian_point

EXPRESS specification

")
*

END_SCHEMA,; -- end AIC_ELEMENTARY_BREP SCHEMA

(©1S0O 2000 — All rights reserved 11

ISO 10303-513:2000(E)

Annex A
(normative)

Short names of entities

Table A.1 provides the short names of entities specified in this part of ISO 10303. Requirements on the
use of the short names are found in the implementation methods included in ISO 10303.

Table A.1 — Short names of entities

\ Entity name | Short name|
| ELEMENTARY_BREP_SHAPE_REPRESENTAT|GRSR \

12 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

Annex B
(normative)

Information object registration

B.1 Document identification

To provide for unambiguous identification of an information object in an open system, the object identi-
fier

{iiso standard 10303 part(513) version(1) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in ISO 10303-1.

B.2 Schema identification

To provide for unambiguous identification of the aic_elementary_brep in an open information system,
the object identifier

{iiso standard 10303 part(513) version(1) object(1) aic-elementary-brep(1) }

is assigned to the aic_elementary_brep schema (see clause 4). The meaning of this value is defined in
ISO/IEC 8824-1, and is described in ISO 10303-1.

(©1S0O 2000 — All rights reserved 13

ISO 10303-513:2000(E)

Annex C
(informative)

Computer-interpretable listings

This annex provides a listing of the EXPRESS entity names and corresponding short names as speci-
fied in this Part of ISO 10303 without comments or other explanatory text. This annex is available in
computer-interpretable form and can be found at the following URLS:

Short names: http://www.mel.nist.gov/div826/subject/apde/snr/
EXPRESS: http://www.mel.nist.gov/step/parts/part513/is/

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC 184/SC4
Secretariat directly at: sc4sec@cme.nist.gov.

NOTE - The information provided in computer-interpretable form at the above URLs is informative. The infor-
mation that is contained in the body of this part of ISO 10303 is normative.

14 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

Annex D
(informative)

EXPRESS-G diagrams

Figures D.1 through D.4 correspond to the EXPRESS generated from the short listing given in clause 4
using the interface specifications of ISO 10303-11. The diagrams use the EXPRESS-G graphical nota-
tion for the EXPRESS language. EXPRESS-G is defined in annex D of ISO 10303-11.

NOTE 1 The following select types are interfaced into the AIC expanded listing according to the implicit inter-
face rules of ISO 10303-11. These select types are not used by other entities in this part of ISO 10303.

— geometric_set_select;

— pcurve_or_surface;

— reversible_topology;

— shell;

— trimming_select;

— vector_or_direction.

NOTE 2 The implicitinterface rules of ISO 10303-11 also introduce some entities whose instantiation is prohib-

ited by rules on thelementary_brep_shape_representatianThese entities are markéd ” in the EXPRESS-G
diagrams.

(©1S0O 2000 — All rights reserved 15

ISO 10303-513:2000(E)

elementary_
coordinate_ brep_shap.e_
' space_ geometric_ representation
solid_model O— representation T
_context shape__
representation
i context? Tcontext_
- imension i ifi
manifold_ I count T type |dent|f|e:1am T
solid_brep == -~ representation :O— representation
context context! mapped
[of_items representation
faceted_ brep_with_ items
brep * voids S mapping
outer ' voids origin representation
14(2)) S[0:7] representation —map
p) _item mapping T‘”appmg_
o closed_ 9 oriented_ | orientation nam ? target - Souree
shell ©H—— closed_shell mapped_
closed—— item
shell_element
T connected_
— ' shell face_set J)
15(2)) cfs_faces fopological_ geometric_
S[1:7] 1 representation representation
open item item
C —— l
placemeny™—T— ..

open

B 22 ' vector_ori.
shell_ face bound 1 - _d_lr_e_C’ElQﬂJ'
clemen - (e M azeay L—@
oriented i
_ ; axisl
open_ oo | % scale
she surface ' |

3 direction oo
(Lorientation 52 direction Oggtrsz L
: 2,7 , :
direction_[¢ . cartesian_
edge curve /= tos L[23 | wansformtion
face surface |
- DER) |
F)ZE,ltGh 29 () 1 axis3 l
’ oint \
—_P |
1

172 (2)) % (l) - cartesian_
transformation

I length_ |5 cartesian_ _operator_3d
L _measure j_ point
coordinates 13(3E4)
* excluded by rule on L[1:3] ¢ __
elementary_brep_shape_representation local_origin

Figure D.1 — aic_elementary_boundary_representation EXPRESS-G
diagram, page 1 of 4

16 ©I1S0O 2000 — All rights reserved

rT

ISO 10303-513:2000(E)

|| reversible_
1 topology |
face_geometryl t5ce @D
surface ——— o R
34 same_sense O reverab[e_ :
s P o] | oploay.em
face orientation
face hy
clomént -
bounds S[J_:ai J} (2.2 (1)) closed_shel
face_outer (O——— face_bound
_bound o
bound orientation 15
ou i open_she
2,6 (1)
f—
2,5(1) loop 0 "
pal path_
1 element |edge_list
S oriented_ L[1:?]
vertex_ 1 4 path*
loop J}orientation
edge_ . _
loop_vertex loop oriented_ orlentaté)on
2,3(2) edge
' edge_elemeni
edge_start 1
vertex edge
l edge_end
vertex é)
int 2,4 (1
pom (290) R s N)
vertex_ curve
geometry same cdge
Sens% geometry
< 1,2)
point 4,2 curve

* entity is implicitly interfaced but
excluded by rules

Figure D.2 — aic_elementary_boundary_representation EXPRESS-G
diagram, page 2 of 4

(©1S0O 2000 — All rights reserved 17

ISO 10303-513:2000(E)

1,2

point

412 e m e — ==
curve rTtrimming_

'geometric_ | , pcurve_or_|
- — [
I

. surface |

e —— = - ===

3.2 (1)
cartesian_
point

placement Q

surface

location
3,4 (2)) I

[] G

" axis2 axis |
elementary_| POSItion. placement_ |ref_directioh
surface 3d

p L[3:3] (DER)
. (33

toroidal_
surface
major_ minor_ radius
O O O) radius
plane conical_ spherical_ cylindrical_ | |~ positive_ | I positive |
surface surface surface | length_ | | length_ |
L measure | L measure |
semi_ang| radius radius radius degeperate_
toroidal_
< p __ O _ surface
plane_ . length_ | 1 positive_ 1 | positive_ |
' angle_ | measure, | length_ | 1| length_ I select_outefr
L measure | L measure | | measure |

Figure D.3 — aic_elementary_boundary_representation EXPRESS-G
diagram, page 3 of 4

18 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

! 1

bounded_
curve
= S L3
line cartesian_
point
polyline dir
points
LIST[2:?] vector O—@l)
O . .
1,3 orientatio
cartesian_ magnitude
point 1,1direction) L
length_ |
_ measure
. position 'FT_ _éx_éz__":
conic . | placement;
3,3
axis2_phcement
3d
1
circle ellipse parabola hyperbola
radius semi_axis_ semi_axis_2 focal_dist semi_axi semal&lir;ag_
| positive_ | | positive_ | " length_ 1| | positive_ |
| length_ | | length_ | _ measure | length_ |
L _ measure | L _ measure |

L measure _|

Figure D.4 — aic_elementary_boundary_representation EXPRESS-G
diagram, page 4 of 4

(©ISO 2000 — All rights reserved

19

ISO 10303-513:2000(E)

Annex E
(informative)

AIC conformance requirements and test purposes

E.l AIC conformance requirements: elementary B-rep

Any application protocol that uses this AIC may require conformance to the AIC conformance require-
ments defined below when instantiatingelamentary_brep_shape_representatian

Conformance to this AIC means that all the defined types and entity types defined in the EXPRESS listing
are supported. The only legitimate use, within the context of this AIC, for a geometric or topological
entity instance is for the purpose of definingedamentary_brep_shape_representatian

The following entities are instantiable as part of the definition acflamentary_brep_shape_representatian
— axis2_placement_3d;

— brep_with_voids;

— cartesian_point;

— cartesian_transformation_operator_3d;

— circle;

— closed_shell;

— conical_surface;

— cylindrical_surface;

— degenerate_toroidal_surface;

— direction;

— edge_curve;

— edge_loop;

— elementary_face;

— ellipse;

— face_bound;

20 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

— face _outer_bound;
— face_surface;

— hyperbola;

— line;

— manifold_solid_brep;
— mapped_item;

— oriented_closed_shell;
— parabola;

— plane;

— polyline;

— representation_map;
— spherical_surface;
— toroidal_surface;

— vector;

— vertex_loop;

— vertex_point.

E.2 Test purposes for elementary B-rep AIC

This clause defines conformance test purposes which are appropriate for the elementary B-rep AIC. The
test purposes are based on the constructs found in clause 4 of this part of ISO 10303.

E.2.1 elementary _brep _shape representation
The following test purposes are derived from the definition of this entity:

EB1: representationasshape_representatioras
elementary_brep_shape_representatian(see E.3.1).

EB2: elementary_brep_shape_representatiowith context aggeometric_contextwith items as
manifold_solid_brep. (see E.3.1).

(©1S0O 2000 — All rights reserved 21

ISO 10303-513:2000(E)
EB3: elementary_brep_shape_representatiowith context ageometric_contextwith items as
mapped_item (see E.3.6).
EB4: elementary_brep_shape_representatiowith context aggeometric_contextwith items as

two or more items amanifold_solid_brep, or mapped_item or axis2_placement_3dincluding
at least on@axis2_placement_3d(see E.3.6)

E.2.2 manifold_solid_brep
The following test purposes are derived from the definition of this entity:

EB5: manifold_solid_brep with outer (voids absent) aslosed_shell (NOT oriented_closed_-
shellsubtype.) (see E.3.1).

EB6: manifold_solid_brep asbrep_with_voids subtype with outer aslosed_shelbnd voids as
a SET of oneoriented_closed_shell(voids present) (see E.3.2)

EB7: manifold_solid_brep asbrep_with_voids subtype with outer aslosed_shelbnd voids as
a SET of more than onariented_closed_shell(voids present) (see E.3.2).

E.2.3 oriented_closed_shell

The following test purpose is derived from the definition of this entity and the constraints imposed on the
elementary_brep_shape_representatian

EB8: oriented_closed_shelvith orientation = FALSE. (see E.3.2).

E.2.4 closed_shell

The following test purpose is derived from the definition of this entity and the constraints imposed on the
elementary_brep_shape_representatian

EB9: closed_shelivith cfs_facesas a SET of onéace_surface (see E.3.2).

EB10: closed_shelWwith cfs_facesas a SET of more than offiece_surface (see E.3.1).

E.25 face

The following test purposes are derived from the definition of this entity and the constraints imposed on
theelementary_brep_shape_representatian

EB11: faceasface surfacewith boundsas SET of ondace boundasface outer boundwith
orientation = TRUE. (see E.3.1).

22 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)
EB12: faceasface surfacewith boundsas SET of ondace boundasface outer boundwith
bound asedge_loop(notoriented_path) andorientation = FALSE. (see E.3.1).

EB13: face asface_surfacewith bounds as SET of at least twéace_bound with bound as
edge_loopandorientation = TRUE. (see E.3.1).

EB14: face asface_surfacewith bounds as SET of at least twéace_bound with bound as
edge_loopandorientation = FALSE. (see E.3.1).

EB15: faceasface_surfacewith boundsas SET of at least twlace_bound (including onever-
tex_loop). (see E.3.5).

E.2.6 face_surface

The following test purposes are derived from the definition of this entity and the constraints imposed on
theelementary_brep_shape_representatian

EB16: face_surfacewith face_geometryassurface (see E.3.1).
EB17: face_surfacewith same_sense TRUE. (see E.3.1).

EB18: face_surfacewith same_sense FALSE. (see E.3.5).

E2.7 surface

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB19: surfaceaselementary_surface (see E.3.1).

E.2.8 elementary_surface

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB20: elementary_surfaceawith position asaxis2_placement_3dvith axispresent. (see E.3.1).
EB21: elementary_surfacewith position asaxis2_placement_3dvith axisabsent. (see E.3.4).

EB22: elementary_surfacewith position as axis2_placement_3dwith ref_direction present.
(see E.3.1).

EB23: elementary_surfacewith positionasaxis2_placement_3avith ref_direction absent. (see
E.3.4).

(©1S0O 2000 — All rights reserved 23

ISO 10303-513:2000(E)

EB24: elementary_surfaceasplane. (see E.3.1).

EB25: elementary_surfaceascylindrical_surface. (see E.3.1).
EB26: elementary_surfaceasconical_surface (see E.3.5).
EB27: elementary_surfaceasspherical_surface (see E.3.1).

EB28: elementary_surfaceastoroidal_surface. (see E.3.3).

E.2.9 loop

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB29: loopasedge_loop (see E.3.1).

EB30: loopasvertex_loopwith loop_vertexasvertex_pointwith vertex_geometryascartesian_-
point. (see E.3.2).

E.2.10 edge

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB31: edgeasedge_curvewith edge_startasvertex_point andedge_endasvertex_point. (see
E.3.1).

EB32: edgeasoriented_edgewith orientation TRUE. (see E.3.1).

EB33: edgeasoriented_edgewith orientation FALSE. (see E.3.3).

E.2.11 edge_curve

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB34: edge_curvewith edge_geometnasline. (see E.3.3).
EB35: edge_curvewith edge_geometnaspolyline. (see E.3.4).
EB36: edge_curvewith edge_geometnasconic. (see E.3.1).
EB37: edge_curvewnith same_sense TRUE. (see E.3.1).

EB38: edge_curvewith same_sense FALSE. (see E.3.5)>

24 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

E.2.12 conic

The following test purposes are derived from the definition of this entity and the constraints imposed on
theface surface

EB39: conicascircle. (see E.3.1).
EB40: conicasellipse (see E.3.1).
EB41: conicashyperbola. (see E.3.5).

EB42: conicasparabola. (see E.3.5).

E.2.13 polyline

The following test purpose is derived from the definition of this entity and the constraints imposed on the
face_surface

EB43: polyline with points as a LIST of 3 or moreartesian_poins. (see E.3.4).

E.2.14 cartesian_transformation_operator_3d

The following test purposes are derived from the definitions of this entitynidygped_itementity, and
the constraints imposed on tekementary_brep_shape_representatian

EB44: mapped_itemwith mapping_targetascartesian_transformation_operator_3d (see E.3.7)

EB45: cartesian_transformation_operatorascartesian_transformation_operator_3dwith scale
as REAL not equal to 1.0. (see E.3.7).

E.3 Abstract test cases for elementary B-rep

The post-processor abstract test cases in this clause are fully documented in EXPRESS-I.

A simple textual description is provided for each pre-processor test case to enable the creation of a model
similar to that described in the EXPRESS-I documentation of the post-processor test. For each test case
a number of relevant test purposes is identified.

NOTE Many of the test purposes are applicable to more than one test case, but the criteria are only defined with
the first such test case. This applies in particular to many of the purposes documented in test case ebl.

E.3.1 Test case ebl

Test case ebl is the most basic test case consisting of the faces needed to define a single solid cylinder
with hemispherical base and elliptic top. All geometry is explicitly defined with no defaults and no sense
reversals of geometry required. The definition of theek is provided by theylinder_sphere_shell

context using the original parameters.

(©1S0O 2000 — All rights reserved 25

ISO 10303-513:2000(E)

E.3.1.1 Test purpose coverage
The AIM test purposes addressed by this test case are listed below.

EB1 representation as shape_representation as elementary_brep_shape_representation;

EB2 elementary_brep_shape_representation with context as geometric_representation_contextwith items
as manifold_solid_brep;

EB5 manifold_solid_brep with outer (voids absent) as closed_shell (NOT oriented_closed_shell sub-
type);

EB10 closed_shell with cfs_faces as a SET of more than one face_surface;

EB11 face as face_surface with bounds as a SET of one face_bound as face outer_bound with orienta-
tion TRUE;

EB12 face as face_surface with bounds as a SET of one face_bound as face outer_bound with orienta-
tion FALSE;

EB13 face as face_surface with bounds as a SET of more than one face_bound with bound as an
edge_loop and orientation TRUE;

EB14 face as face_surface with bounds as a SET of more than one face_bound with bound as an
edge_loop and orientation FALSE;

EB16 face_surface with face_geometry as surface;

EB17 face_surface with same_sense = TRUE;

EB19 surface as elementary_surface;

EB20 elementary_surface with position as axisacpment_3d with axis present;

EB22 elementary_surface with position as axisacpment_3d with ref_direction present;

EB24 elementary_surface as plane;

EB25 elementary_surface as cylindrical_surface;

EB27 elementary_surface as spherical_surface;

EB29 loop as edge_loop;

EB31 edge as edge_curve with edge_start as vertex_point and edge_end as vertex_point;

EB32 edge as oriented_edge with orientation as TRUE;

EB36 edge_curve with edge_geometry as conic;

EB37 edge_curve with same_sense as TRUE;

EB39 conic as a circle;

EB40 conic as an ellipse.

E.3.1.2 Preprocessor input specification

Create arelementary_brep_shape_representatioconsisting of a singlenanifold_solid_brep. The
manifold_solid_brepshould be in the form of a solid cylinder with a hemi-spherical base and a sloping
planar top. The centre of the hemisphere is at the origin and the Z axis is the axis of the cylinder. The
B-rep object is defined by a single closed shell with 3 faces. A suitable set of dimensions is defined in
the EXPRESS-I specification below.

NOTE Thecylinder_sphere_shellcontext is used, in its simplest form with default values, to define the faces
of the B-rep.

26 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

E.3.1.3 Postprocessor input specification

*)
TEST_CASE example_ebrep_1; WITH aic_elementary_brep;

REALIZATION

LOCAL
shell_object : closed_shell ;
cysp_solid : manifold_solid_brep ;
ebsr : elementary_brep_shape_representation ;
its_units : named_unit ;
its_context : representation_context ;

END_LOCAL;
CALL cylinder_sphere_shell ; -- uses default values, so no WITH
IMPORT (shell_object := @cyspshell;) ;
END_CALL;

cysp_solid := manifold_solid_brep ('cysp_solid’, shell_object) ;
its_units := length_unit() || si_unit (mill’, 'metre’) ;
its_context := geometric_representation_context
(context_1’, 'context_for_cylinder_sphere’, 3) ||
global_unit_assigned_context ([its_units]) ;
ebsr := elementary_brep_shape_representation
('ebsr’, [cysp_solid], its_context);

END_REALIZATION;
END_TEST_CASE;

(*
E.3.14 Postprocessor verdict criteria

EB1: All WRs onelementary_brep_shape_representatioshall be verified.

EB2: Length units shall be correctly interpreted, model re-created shall contgiplglmops or
vertex_loops.

EB5: Shell normals shall point out of solid.
EB10: Faces shall be connected along edges, no other face intersections shall occur.

EB11: Face geometry shall be correctly trimmedfage_bound

(©1S0O 2000 — All rights reserved 27

ISO 10303-513:2000(E)
EB12: face_boundwith orientation FALSE shall be correctly interpreted to define correct portion
of face surface.
EB13: Multiple bounds shall be correctly interpreted to triacé.
EB14: face_bound with different orientations shall be correctly interpreted.
EB16: edge_curve and vertices of boundiregige_loos shall lie on surface definirfgce_geometry
EB20: axis2_placementvith axispresent shall be correctly interpreted to locate surface.
EB22: axis2_placementvith ref_direction present shall be correctly interpreted to locate surface.
EB24: Bounding loops of face witface_geometryasplane shall be co-planar.

EB25: Unboundecylindrical_surface shall be bounded bgdge_loos. [EB27] Correct portion
of spherical_surfaceshall be defined bgdge_loos.

EB31: All vertex_points shall lie onedge_curve.

EB36: edgewith identical start and end vertices aadge_geometnas ellipse shall be correctly
interpreted as closed ellipse.

EB39: edgewith identical start and end vertices aadge_geometryas circle shall be correctly
interpreted as a closed circle.

EBA40: ellipsesubtype oftonic shall be correctly interpreted.

E.3.2 Test case eb?2

Test case eb?2 is designed to test the definition of an elementary B-rep containing one or more voids.
Thecylinder_sphere_shellcontext is used with different parameters to define the outer shell and a void
shell. The result is a hollow cylindrical solid with void(s) of a similar shape, or spherical.

NOTE If required this test can easily be modified to test geometric precision by varying the parameters to define
voids that are very close to each other or to the outer shell. As defined in the current version of this test case there
should be no possibility of such interference.

E.3.2.1 Test purpose coverage

The test purposes addressed by this test case are listed below.

EB6 manifold_solid_brep as brep_with_voids subtype with outer as closed_shell and voids as a SET of
one oriented_closed_shell (voids present).

EB7 manifold_solid_brep as brep_with_voids subtype with outer as closed_shell and voids as a SET of
more than one oriented_closed_shell.

28 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

EB8 oriented_closed_shell with orientation as FALSE.
EB9 closed_shell with cfs_faces as a SET of one face_surface .
EB30 loop as vertex_loop.

E.3.2.2 Preprocessor input specification

Createelementary_brep_shape_representatian consisting of a singlenanifold_solid_brep. The
manifold_solid_brep should be in the form of a solid cylindrical solid with a hemi-spherical top and

a sloping planar top. One such B-rep shall contain a void of a similar shape and orientation. A second
example shall contain two such non-intersecting voids, one of a similar shape, the other spherical. The
spherical void shall be defined with a sinfdee surfaceusing avertex_loop. The centre of the hemi-
sphere for the outer shell is at the origin and the Z axis is the axis of the cylinder. Each shell is defined as
a single closed shell with 3 faces. A suitable set of dimensions is defined in the EXPRESS-I specification
below.

E.3.2.3 Postprocessor input specification

NOTE 1 Thecylinder_sphere_shellcontext is used, with appropriate parameters, to define the faces of the
B-rep outer shells and to define the void shells.

NOTE 2 Outershell of brep_with_voidsis a closed_shell and not an oriented_closed_shell, oriented_closed_shell
is used to define voids, orientation must be FALSE.

*)
TEST_CASE example_ebrep_2; WITH aic_elementary_brep;

REALIZATION

LOCAL
shell_object, hollowl, hollow2 : closed_shell ;
voidl, void2 : oriented_closed_shell;
cylsp_with_void : brep_with_voids ;
cylsp_with_voids : brep_with_voids ;
ebsrl, ebsr2 : elementary_brep_shape_representation ;
its_units : named_unit ;
contextl, context2 : representation_context ;
sph2 : spherical_surface ;
11, 12 : length_measure ;
top_pt : cartesian_point ;
top_vert : vertex_point ;
v_loop : vertex_loop ;
s_bound : face_outer bound ;
sp_face : face_surface ;
sp_shell : closed_shell ;

END_LOCAL;

(©1S0O 2000 — All rights reserved 29

ISO 10303-513:2000(E)

CALL cylinder_sphere_shell ; -- uses default values, so no WITH
IMPORT (shell_object := @cyspshell;);

END_CALL;

CALL cylinder_sphere_shell; -- parameters re-set for dimensions

IMPORT (hollowl := @cyspshell;); --large void
WITH (orc := 10; rad := 12; ht := 50;);
END_CALL;

CALL cylinder_sphere_shell ; -- parameters re-set for dimensions
(sphere for spherical void)
IMPORT (sph2 := @sphere;

1 := @orc;
12 ;= @rad ;);
WITH (orc := -5; rad = 10 ;);

END_CALL;

voidl := oriented_closed_shell (voidl’, hollowl, FALSE) ;
top_pt := cartesian_point (‘top_pt, [I1, 11, (11 + 12)]) ;
top_v := vertex_point (top_v’, top_pt) ;

v_loop := vertex_loop ('v_loop’, top_v) ;

s_bound := face_outer_bound ('s_bound’, v_loop, TRUE) ;
sp_face := face_surface ('sp_face’, [s_bound], sph2, TRUE);
sp_shell := closed_shell ('sp_shell’, [sp_face]);

void2 := oriented_closed_shell ('void2’, sp_shell, FALSE) ;

cylsp_with_void :=
manifold_solid_brep (‘cylsp_w_V', shell_object) ||
brep_with_voids ([voidl]) ;

cylsp_with_voids =
manifold_solid_brep (‘cylsp_w_vs’, shell_object)||
brep_with_voids ([voidl, void2]) ;
its_units := length_unit() || si_unit (milli’, 'metre’) ;
contextl := geometric_representation_context |,
(context_1’, 'context_for_cylsp_with_void’, 3) ||
global_unit_assigned_context ([its_units]) ;
context2 := geometric_representation_context ,
(context_1’, 'context_for_cylsp_with_voids’, 3) ||

global_unit_assigned_context ([its_units]) ;

ebsrl := elementary_brep_shape_representation

30 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

('ebsrl’, [cylsp_with_void], contextl) ;

ebsr2 := elementary_brep_shape_representation
(ebsr2’, [cylsp_with_voids], context2) ;

END_REALIZATION;
END_TEST_CASE;

(*

E.3.24 Postprocessor verdict criteria
EB6: Void shell shall not intersect outer shell, void shell shall be completely within outer shell.
EB7: Void shells shall not intersect outer shell or each other, each void shell shall be completely
within outer shell, tweelementary_brep_shape_representatianebsrl and ebsr2 shall not be spa-
tially related.
EB8: Normal to void shells shall point into voids.

EB9: closed_shelivith single face withspherical_surfacegeometry shall be correctly processed.

EB30: vertex_loopshall be correctly processedfase_boundto define face as complete spherical
surface.

E.3.3 Test case eb3

Test case eb3 is a simple test case consisting of the faces needed to define a single solid segment of a
torus bounded by planes. One of the plane/torus intersections is represented by a planar polyline. The
definition of the shell is provided by theroidal_segmentcontext using the original parameters.

E.3.3.1 Test purpose coverage
The test purposes specifically addressed by this test case are listed below.

EB28 elementary_surface as toroidal_surface;

EB33 edge as oriented_edge with orientation as FALSE;
EB34 edge_curve with edge_geometry as line;

EB35 edge_curve with edge_geometry as polyline.

E.3.3.2 Preprocessor input specification

Create arelementary_brep_shape_representatioconsisting of a singlenanifold_solid_brep. The
manifold_solid_brepshould be in the form of a toroidal segment centred at origin with z axis as central
axis. The segment is created by intersecting the torus with three planes, one of which (z = 0) is through
the centre and normal to the central axis. Other two planes are parallel to each other with one (x =

(©1S0O 2000 — All rights reserved 31

ISO 10303-513:2000(E)

0) passing through the centre. Intersection curves are circular arcs or a polyline. The B-rep object is
defined by a single closed shell with 4 faces. A suitable set of dimensions is defined in the EXPRESS-I
specification below.

E.3.3.3 Postprocessor input specification

NOTE Thetoroidal_segmentcontext is used, with default parameters, to define the faces and all geometry and
topology of the B-rep.

*)
TEST_CASE example_ebrep_3; WITH aic_elementary_brep;

REALIZATION

LOCAL
shell_object : closed_shell ;
torus_solid : manifold_solid_brep ;
ebsr : elementary_brep_shape_representation ;
its_units : named_unit ;
its_context : representation_context ;

END_LOCAL;
CALL toroidal_segment ; -- uses default values, so no WITH
IMPORT (shell_object := @torshell;) ;
END_CALL;

torus_solid := manifold_solid_brep (‘torus_solid’, shell_object) ;
its_units := length_unit() || si_unit (milli’, 'metre’) ;
its_context := geometric_representation_context
(context_1’, 'context_for_torshell’;, 3) ||
global_unit_assigned_context ([its_units]) ;
ebsr := elementary_brep_shape_representation
(ebsr’, [torus_solid], its_context);

END_REALIZATION;
END_TEST_CASE;

(*
E.3.34 Postprocessor verdict criteria

EB28: toroidal_surfaceface shall be processed and bounded correctly.

EB33: When edge is re-used with FALSE orientation it shall be correctly interpreted.

EB34: line shall be correctly trimmed by vertices.

32 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

EB35: All polyline points shall lie ortoroidal_surface with a tolerance of less than 0.0000001.
Polyline points shall be coplanar.

E.3.4 Test case eb4

Test case eb4 is a test case consisting of the faces needed to define a single stitig fresa the union

of two cylinders of different radii that have orthogonal axes. The intersection curve is a closed 3D curve
represented by a polyline. The definition of the shell is provided bgyhieder_union_polyline context

using the original parameters.

E.3.4.1 Test purpose coverage
The test purposes specifically addressed by this test case are listed below.

EB21 elementary_surface with position as axisacpment_3d with axis absent;
EB23 elementary_surface with position as axisacpment_3d with ref_direction absent;
EB35 edge_curve with edge_geometry as (closed 3D) polyline.

E.3.4.2 Preprocessor input specification

Create arelementary_brep_shape_representatioconsisting of a singlenanifold_solid_brep. The
manifold_solid_brep should be in the form of two perpendicular intersecting cylinders. Defaults shall
be used in defining thaxis2_placement_3do locate one of these cylinders. The intersection curve shall

be represented by a polyline. A suitable set of dimensions is defined in the EXPRESS-I specification
below.

E.3.4.3 Postprocessor input specification

NOTE Thecylinder_union_polyline context is used, with default parameters, to define the faces and all geom-
etry and topology of the B-rep.

*)
TEST_CASE example_ebrep_4; WITH aic_elementary_brep;

OBJECTIVE
REALIZATION

LOCAL
shell_object : closed_shell ;
cylxcyl_solid : manifold_solid_brep ;
ebsr : elementary_brep_shape_representation ;
its_units : named_unit ;
its_context : geometric_representation_context ;
END_LOCAL;

(©ISO 2000 — All rights reserved 33

ISO 10303-513:2000(E)

CALL cylinder_union_polyline ; -- uses default values, so no WITH
IMPORT (shell_object := @cxcshell ;) ;
END_CALL;

cylxcyl_solid := manifold_solid_brep (‘cylxcyl_solid’,
shell_object) ;
its_units := length_unit() || si_unit (mill’, ‘'metre’) ;

its_context := geometric_representation_context
(context_1’, 'context_for_cylxcyl’, 3) ||
global_unit_assigned_context ([its_units]) ;

ebsr := elementary_brep_shape_representation
(ebsr, [cylxcyl_solid], its_context);
END_REALIZATION;
END_TEST_CASE;

(*
E.3.4.4 Postprocessor verdict criteria
EB21: Default value ofaxis attribute shall be correctly supplied.

EB23: Default value ofref_direction attribute shall be correctly supplied.

EB35: All polyline points shall lie on BOTHcylindrical_surfaces with a tolerance of less than
0.000001.

E.3.5 Test case eb5

Test case ebb5 is a test case consisting of the faces needed to define sdliitigfesn the intersection

of inclined planes with a cone. Face boundary curves are ellipse, hyperbola, parabola, circular arc, and
line segments. The definition of the shells is provided bydbee facescontext using the original
parameters.

E.3.5.1 Test purpose coverage
The test purposes specifically addressed by this test case are listed below.

EB2 elementary_brep_shape_representation with context as geometric_representation_contextwith items
as a SET of more than one manifold_solid_brep;

EB15 face as face_surface with bounds as a SET of at least two face_bounds including one vertex_loop;
EB26 elementary_surface as conical_surface;

EB40 conic as a ellipse;

EB41 conic as hyperbola;

EB42 conic as parabola.

34 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

E.3.5.2 Preprocessor input specification

Create arelementary_brep_shape_representatiooonsisting of twananifold_solid_breps. Theman-
ifold_solid_breps should be in the form of cones bounded by inclined planes. The planes are chosen to
produce intersection curves in the form of elliptic, parabolic, hyperbolic and circular arcs. One cone has
avertex_loopat the apex and an elliptic base. The second has the same elliptic curve as its top profile.
A suitable set of dimensions is defined in the EXPRESS-I specification below.

E.3.5.3 Postprocessor input specification

NOTE Thecone_shelcontextis used, with default parameters, to define the faces and all geometopatud)ly
of the B-reps.

*)
TEST_CASE example_ebrep_5; WITH aic_elementary_brep;

REALIZATION

LOCAL
shelll, shell2 : closed shell ;
conel, cone2 : manifold_solid_brep ;
ebsr : elementary_brep_shape_representation ;
angle_u, len_u, angle_c_u : named_unit ;
ang_m_wu : plane_angle_measure_with_unit ;
its_context : geometric_representation_context ;
END_LOCAL;

CALL cone_shell ; -- uses default values, so no WITH
IMPORT (shelll := @vconeshell ;
shell2 := @con4fshell ;) ;

END_CALL;
conel := manifold_solid_brep (‘conel’, shelll) ;
cone2 := manifold_solid_brep (‘cone2’, shell2) ;

angle_c_u := plane_angle_unit() || si_unit (, 'radian’) ;
ang_m_wu := plane_angle_measure_with_unit(.017453293, angle_c_u);
angle_u := plane_angle_unit() ||

conversion_based_unit('degree’, ang_m_wu) ;
len_u := length_unit() || si_unit (mill’, 'metre’) ;

its_context := geometric_representation_context
(context_1’, 'context_for_cones’, 3) ||
global_unit_assigned_context ([len_u, angle_u]) ;

ebsr := elementary_brep_shape_representation
(ebsr, [conel, cone2], its_context);

(©ISO 2000 — All rights reserved 35

ISO 10303-513:2000(E)

END_REALIZATION;
END_TEST_CASE;

(*
E.3.54 Postprocessor verdict criteria

EB2: Two B-reps should exactly fit together with a common face surface, two distinct B-reps shall
not intersect.

EB15: facewith face_boundasvertex_loopshall be correctly processed.
EB26: conical_surface shall be correctly trimmed by bounding edges.

EB40: All points on the ellipse shall lie exactly on BOTébnical_surfaces and on intersecting
plane.

EB41: All hyperbolic edge points shall lie exactly on BOTédnical_surfaceand on intersecting
plane, hyperbola shall be properly trimmed byertex_points.

EB42: All parabolic edge points shall lie exactly on BOTdénical_surfaceand on intersecting
plane, parabola shall be properly trimmed byertex_points.

E.3.6 Test case eb6

Test case eb6 is designed to test the usenapped_itens in the creation of a simple assembly of
elementary B-reps. It also provides a test of the consistent behavigeoaietric_representation_-
contexts in distinguishing between coordinate spaces. This test makes use oflitieer_union_-
polyline context to define the geometry and topology.

E.3.6.1 Test purpose coverage
The test purposes addressed by this test case are listed below.

EB3 elementary_brep_shape_representation with context as geometric_representation_contextwith items
as mapped_item;

EB4 elementary_brep_shape_representation with context as geometric_representation_context with two
or more items as manifold_solid_brep, or mapped_item, or axis2_placement_3d, including at least one
axis2_placement_3d.

E.3.6.2 Preprocessor input specification

Create a basielementary_brep_shape_representatiomonsisting of amanifold_solid_brep in the
form of 2 intersecting cylinders as defined in eb4. mfapped_itemis then defined as a translated
and rotated copy of this representation. Two furédementary_brep_shape_representatiagnare then
defined; one, in the same context, consists ofrttag@ped_itemonly; the other, in a distinct context

36 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

contains the originahanifold_solid_brep, themapped_itemand araxis2_placement_3dFull details
of dimensions and of the mapping are defined in the EXPRESS-I specification below.

E.3.6.3 Postprocessor input specification

NOTE 1 Inthe specification below two distimptometric_representation_contexd are created for the geomet-
ric definitions.

NOTE 2 Thecylinder_union_polyline context is used, with default parameters, to define the faces and all ge-
ometry and topology of the B-reps.

NOTE 3 ebsrlshould be a rotated and translated copegludr.

NOTE 4 ebsrassshould be equivalent to 2 copieseatfsr'glued’ together.
")
TEST_CASE example_ebrep_6; WITH aic_elementary_brep;
REALIZATION

LOCAL
origin : cartesian_point ;
pos_z, neg_y : direction ;
refaxes, topaxes, baseaxes : axis_placement_3d;
shell_object : closed_shell ;
cylxcyl : manifold_solid_brep ;
ebsr, ebsrl, ebsrass : elementary_brep_shape_representation ;
grcl, grc2 : geometric_representation_context ;
transrotl, trans2 : mapped_item ;

mappingl, mapping2 . representation_map ;
END_LOCAL;
CALL cylinder_union_polyline ; -- uses default values, so no WITH

IMPORT (shell_object := @cycshell,
origin = @origin;
baseaxes = @ ab; refaxes = @ar; topaxes := @at;);
END_CALL;

cylxcyl := manifold_solid_brep (‘cylxcyl’, shell_object) ;

grcl = geometric_representation_context (‘ctx1’,
‘context for cylinder union’, 3) ;
grc2 = geometric_representation_context (‘ctx2’,

(©ISO 2000 — All rights reserved 37

ISO 10303-513:2000(E)

‘context for rotated cylinder union’, 3) ;
ebsr := elementary_brep_shape_representation (‘ebsr’, [cylxcyl], grcl);

mappingl := representation_map (baseaxes, ebsr);
transrotl := mapped_item (‘transrotl’, mappingl, refaxes);

(* Define representation using transrotl only *)
ebsrl := elementary_brep_shape_representation (‘ebsrl’,
[transrotl], grcl) ;
(* Define representation that is an assembly of intersecting cylinders
+ mapped (translated) copy.

%)

mapping2 := representation_map (baseaxes, ebsr);
trans2 := mapped_item (trans2’, mapping2, topaxes);

ebsrass := elementary_brep_shape_representation
(‘ebsrass’, [ebsrl, ebsrot2, baseaxes], grc2) ;

END_REALIZATION;
END_TEST_CASE;

(*
E.3.6.4 Postprocessor verdict criteria

EB3: After processing the mapped_item shall be correctly interpreted, resultis a rotated and trans-
lated copy of original B-rep.

EB4: Theelementary_brep_shape_representationontaining anapped_item B-rep andaxis2_-
placement_3dshall be correctly interpreted, the result is the original B-rep and a rotated and trans-
lated copy of original B-rep which touches over a face.

EB3 and EB4: The two distinctelementary_brep_shape_representatisishall not be spatially
related.

E.3.7 Test case eb7

Test case eb7 is designed to test the useagped_itens in conjunction with &artesian_transformation_-
operator in the creation of a simple assembly of faceted B-reps. The use of a scaling factor is tested.
This test makes use of thglinder_sphere_shellcontext to define the geometry and topology.

E.3.7.1 Test purpose coverage

The test purposes specifically addressed by this test case are listed below.

38 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

EB44 mapped_item with mapping_target as cartesian_transformation_operator_3d.
EB45 cartesian_transformation_operator as cartesian_transformation_operator_3d with scale as REAL
not equal to 1.0.

E.3.7.2 Preprocessor input specification.

Create arelementary_brep_shape_representatioconsisting of a singlenanifold_solid_brep. The

B-rep should be in the form of a solid cylinder with a hemispherical base and a sloping planar top.
The hemisphere is centred at the origin and the axis of the cylinder should lie along the z coordi-
nate axis. This representation is then used in conjunction withmieped_item entity and acarte-
sian_transformation_operator, to create, in the samepresentation_context a representation con-
sisting of a rotated, translated and scaled (not by 1.0) copy of the original representation and the original
B-rep. The translation and the magnitude of the scaling factor should be chosen to ensure that the cylin-
ders of the two B-reps touch, but do not intersect.

E.3.7.3 Postprocessor input specification

NOTE Thecylinder_sphere_shellcontext is used, with default parameters, to define the faces and all geometry
and topology of the B-resransshould be a rotated scaled and translated cogysp_solid

")
TEST_CASE example_ebrep_7; WITH elementary_brep_aic;
REALIZATION

LOCAL
radius : length_measure ;
origin, neworigin : cartesian_point ;
pOS_X, POS_y, pos_z, neg_z : direction ;
oldaxes : axis_placement_3d;
transform : cartesian_transformation_operator_3d;
shell_object : closed_shell ;
cysp_solid : manifold_solid_brep ;
ebsr, ebsrass : elementary_brep_shape_representation ;
its_units : named_unit ;
grcl, grc2 : representation_context ;
cstrans @ mapped_item ;
mappingl : representation_map ;

END_LOCAL;
CALL cylinder_sphere_shell ; -- uses default values, so no WITH
IMPORT (shell_object := @cyspshell;
pos_X = @pos_X ;
pos_y = @pos_y ;
pos_z = @pos_z ;

origin := @origin ;

(©ISO 2000 — All rights reserved 39

ISO 10303-513:2000(E)

radius = @rad ;) ;
END_CALL;

cysp_solid := manifold_solid_brep ('cysp_solid’, shell_object) ;
its_units := length_unit() || si_unit (‘milli’, 'metre’) ;

grcl = geometric_representation_context (‘ctx1’,
‘context for cysp_solid’, 3) ||
global_unit_assigned_context ([its_units]) ;

grc2 = geometric_representation_context (‘ctx2’,
‘context for assembly’, 3) ||
global_unit_assigned_context ([its_units]) ;

(* Define axis_placement and cartesian_transformation_operator for use
in mapping *)

neworigin := cartesian_point ([1.8*radius, 0.0, 0.0]);
neg_z := direction ([0.0, 0.0, -1.0]);

oldaxes := axis2_placement_3d (‘oldaxes’, origin, pos_z, pos_x) ;

transform := cartesian_transformation_operator_3d (‘transform’,
pos_X, neg_z, neworigin, 0.8, pos_y);

ebsr := elementary_brep_shape_representation (‘ebsr’,
[cysp_solid, oldaxes], grcl) ;

mappingl := representation_map (oldaxes, ebsr);

(* cysptrans is an 80% scaled copy of original rotated about x axis and
translated along this axis *)

cstrans = mapped_item ('cstrans’, mappingl, transform);

(* Define representation that is an assembly of original B-rep +
transformed (scaled and translated and rotated) copy.*)

ebsrass = elementary_brep_shape_representation
(‘ebsrass’, [cysp_solid, cstrans], grc2) ;

END_REALIZATION;
END_TEST_CASE;

(*

40 ©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

E.3.74 Preprocessor verdict criteria

EB44: After processing the B-rep solid defined byapped_item shall be correctly scaled and
positioned.

EB45: After processing absrass should consist of two B-rep solids of cylindrical form with a hemi-

spherical base which are in tangential contact in the plane x = 25. One is a 4/5 size copy of the other
after translation and rotation.

E4 Contexts defined for test cases of elementary B-rep

The EXPRESS-| contexts below are used in the test cases in clause E.3.

E4.1l Cylinder_sphere_shell context

This context provides the faces needed to define a siopged_shelbf cylindrical shape with hemi-
spherical base centred at (orc,orc,orc), radius rad and axial height h to oblique face.

All bounds are defined bgdge_loogs andconics.
")

CONTEXT cylinder_sphere_shell ;
WITH aic_elementary_brep;

PARAMETER
orc . length_measure := 0.0;
h . length_measure := 100.0;
rad : length_measure = 25.0;
majrad . length_measure := rad*rt2;
origin : cartesian_point := cartesian_point (‘origin’, [orc, orc, orc]);
ctop . cartesian_point := cartesian_point ('ctop’, [orc, orc,
orc + hj);

pos_x : direction := direction (pos_x’, [1, 0, 0]);
pos_y : direction := direction (pos_y’, [0, 1, Q]);
pos_z : direction := direction (pos_z’, [0, O, 1]);
dslope : direction := direction (‘dslope’, [1, 0O, -1]);
dperp : direction := direction (dperp’, [1, O, 1]);
al : axis2_placement_3d := axis2_placement_3d (‘al’, origin,

pos_z, pos_X) ;
a2 : axis2_placement_3d := axis2_placement_3d ('a2’, ctop,

dperp, dslope) ;

pl . plane := plane (pl, a2) ;

(©1S0O 2000 — All rights reserved 41

ISO 10303-513:2000(E)

cyl . cylindrical_surface := cylindrical_surface ('cyl’, al, rad);
sphere : spherical_surface := spherical_surface ('sphere’, al, rad);
circ : circle := circle (circ’, al , rad);

elli . ellipse := ellipse(elli’, a2 , majrad ,rad);

cpoint : cartesian_point := cartesian_point (‘cpoint’, [(orc + rad),
orc, orc)) ;
epoint : cartesian_point =
cartesian_point (‘epoint’, [(orc + rad), orc,
(orc + h - rad)]);

vertc : vertex_point :
verte : vertex_point

vertex_point ('vertc’, cpoint);
vertex_point ('verte’, epoint);

edgel : edge_curve := edge_curve (‘edgel’, vertc, vertc, circ, TRUE);
edge2 : edge_curve := edge_curve (‘edge2’, verte, verte, elli, TRUE);
oel . oriented_edge := oriented_edge (‘oel’, edgel, TRUE);

oe2 . oriented_edge := oriented_edge (‘oe2’, edge2, TRUE);

loopc : edge_loop edge_loop (loopc’, [oel]);

loope : edge_loop edge_loop (loope’, [0e2));

bc . face_outer_bound := face_outer_bound (’bc’, loopc, FALSE) ;
be . face_outer_bound := face_outer_bound ('be’, loope, TRUE) ;
bcylbot : face_bound := face_bound (’bcylbot’, loopc, TRUE);
bcyltop : face_bound := face_bound (’bcyltop’, loope, FALSE);

curved_face : face_surface := face_surface('curved_face’, [bcylbot,
bcyltop], cyl, TRUE);
top_face : face_surface := face_surface (top_face’, [be], pl, TRUE);
bottom_face : face_surface := face_surface (‘bottom_face’, [bc],
sphere, TRUE);
END_PARAMETER,;

SCHEMA_DATA cyl_sph_shell_ctxt;
CONSTANT

rt2 == sqrt(2.0);

rt3 == sqrt(3.0);
END_CONSTANT;
cfs = connected face_set {SUBOF(@tri);

cfs_faces -> (@curved_face, @top face, @bottom_face);
SUPOF(@cyspshell);} ;

tri = topological representation_item {SUBOF(@ri); SUPOF(@cfs);} ;

ri = representation_item {name -> ’'cyspshell’; SUPOF(@tri); };

42 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

cyspshell = closed_shell {SUBOF(@cfs); };
END_SCHEMA DATA;

END_CONTEXT ;
(*

E.4.2 Cone_shell context

This context provides the faces needed to define closed shells of conical shape with cilijptiat, e
hyperbolic or parabolic faces. The cone has vertex at (orc,orc,orc), semi-angle 30 degrees and axis
parallel to z axis. The normal to each plane face is orthogonal to y axis direction, and is at a fixed
angle.

NOTE plane_angle_unitsare required to be degrees.

The dimensions of the resulting shell can be controlled by varying the values of the distances dc, de, dh,
dp from the apex, of the intercepts of the planes of the circle, ellipse, hyperbola, parabola respectively
with the cone axis.

2 adjacent shells can be defined, a simple conical shell Wifitie base and a more complex conical
shape with planar facedliptic top, circular base and hyperbolic and parabolic sides. Base has 2 straight
edges parallel to y axis.

All bounds are defined bgdge_loogs usinglines orconics, or by avertex_loop

")
CONTEXT cone_shell ;
WITH aic_elementary_brep;

PARAMETER

orc . length_measure := 0.0;
dc . length_measure := 200.0;
de . length_measure := 20.0;

(* Note: dp and dh should be greater than the distance dc to the base
circle. To avoid intercepts with top ellipse dh > 7.47 de,
and dp > 1.27 de ¥

dh . length_measure := 300.0;

dp . length_measure := 250.0;

emaj . length_measure := de*(rt3/rt2);

emin . length_measure := de*(rt2/2.0);

haxis . length_measure := 0.5*dh*rt3/rt2;

himag . length_measure := dh*sqrt((rt3 - 1.0)/8.0);

yh . length_measure := sgrt((rt3 - 1.0)*((2.5 - 1.5*rt3)*dh*dh +

dc*dh*(3.0*rt3 - 5.0) + 4.0*dc*dc*(2.0 - rt3)/3.0));
(* location points for cone, base circle, ellipse, hyperbola and

(©ISO 2000 — All rights reserved 43

ISO 10303-513:2000(E)

parabola respectively:
")
origin : cartesian_point := cartesian_point('origin’,[orc, orc, orc]);
cbase : cartesian_point := cartesian_point ('cbase’,
[orc, orc, orc - dc));

ecent . cartesian_point := cartesian_point(’ecent’,
[orc+0.5*de, orc, orc-1.5*de));
hcent . cartesian_point := cartesian_point(’hcent’,

[orc+dh*(rt3 + 1.0)/8.0, orc, orc + dh*0.375*(rt3 - 1.0)]);
ppoint : cartesian_point := cartesian_point('ppoint’,
[(orc - 0.5*dp/rt3), orc, (orc - 0.5*dp)]);
epoint : cartesian_point := cartesian_point(’epoint’,
[orc + 0.5*de*(rt3 + 1.0), orc, orc - 0.5*de*(3.0 + rt3)]);
(* intersection points of conics with plane of base: *)
ppbl . cartesian_point := cartesian_point('ppbl’, [orc +
(dc - dp)/rt3, orc -(0.5*dp/rt3)*sqrt(8.0*dc/dp - dp), orc - dc]);
ppb2 : cartesian_point := cartesian_point('ppb2’,Jorc + (dc - dp)/rt3,
orc + (0.5*dp/rt3)*sqrt(8.0*dc/dp - dp), orc - dc));

phbl . cartesian_point := cartesian_point('phb1’,
[orc + (dp - dc)*(2.0 - rt3), orc - yh, orc - dc]);
phb2 . cartesian_point := cartesian_point('phb2’,

[orc + (dp - dc)*(2.0 - rt3), orc + yh, orc - dc]);

pos_x . direction := direction ('‘pos_x, [1, 0, 0]);
pos_y . direction := direction ('‘pos_y’, [0, 1, O]);
vec_ y . vector := vector ('vec_ y’, pos_y, 1.0);

pos_z . direction := direction ('pos_z', [0, O, 1]);

denorm : direction :
dhnorm : direction :

direction ('denorm’, [1.0, O, 1.0]);
direction ('dhnorm’,
[(t3 + 1.0) , O, -(rt3 - 1.0)]);
dpnorm : direction := direction ('dpnorm’, [rt3, 0, 1]);
(* planes of ellipse, parabola and hyperbola are set at angles of 45
degrees, 30 degrees and 15 degrees to axis of cone *)
dir_e : direction := direction (dir_e’, [1.0, 0, -1.0]);
dir_h : direction := direction (dir_h’,

[-(rt3 - 1.0) , O, -(rt3 + 1.0)]);
dir_p : direction := direction (dir_p’, [1, O, -rt3]);

al . axis2_placement_3d := axis2_placement_3d (‘al’, origin,
pos_z, pos_X) ;
ac . axis2_placement_3d := axis2_placement_3d (‘ac’, cbase, pos_z,
pos_X);
ae . axis2_placement_3d := axis2_placement_3d (‘ae’, ecent, denorm,
dir_e);
ah . axis2_placement_3d := axis2_placement_3d (‘ah’, hcent, dhnorm,
dir_h);

44 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

ap . axis2_placement_3d := axis2_placement_3d (‘ap’, ppoint, dpnorm,
dir_p) ;
a2 : axis2_placement_3d := axis2_placement_3d ('a2’, cbase, pos_z,
pos_X) ;
ple : plane := plane (ple’, ae) ;
plc : plane := plane (plc’, ac) ;
plh : plane := plane (plh’, ah) ;
plp : plane := plane (plp’, ap) ;
cone : conical_surface := conical_surface (‘cone’, al, 0.0, 30.0);
circ : circle := circle ('circ’, ac , (dc/rt3);
elli : ellipse := ellipse(elli’, ae, emaj, emin);
hyp . hyperbola := hyperbola(hyp’, ah, haxis, himag);
parab : parabola := parabola(’parab’, ap, 0.25*dp/rt3);
linpb : line := line(linpb’, ppbl, vec_y);
linph : line := line(linph’, phbl, vec_y);
vertorc : vertex_point := vertex_point (‘vertorc’, origin);
verte : vertex_point := vertex_point ('verte’, epoint);
vertpbl : vertex_point := vertex_point ('vertpbl’, ppbl);
vertpb2 : vertex_point := vertex_point ('vertpb2’, ppb2);
verthbl : vertex_point := vertex_point ('verthbl’, phbl);
verthb2 : vertex_point := vertex_point ('verthb2’, phb2);
edgel : edge_curve = edge_curve (‘edgel’, verte, verte, elli, TRUE);
edge? : edge_curve = edge_curve (‘edge2’, vertpbl, vertpb2,
parab, TRUE);
edge3 : edge_curve = edge_curve (‘edge3d’,verthbl, verthb2, hyp,TRUE);
edgebl : edge_curve := edge_curve (‘edgebl’, vertpbl, verthbl,
circ, TRUE);
edgeb2 : edge curve := edge curve (‘edgeb2’, verthbl, verthb2,
linph, TRUE);
edgeb3 : edge curve := edge curve (‘edgeb3’, verthb2, vertpb2,
circ, TRUE);
edgeb4 : edge curve := edge curve (‘edgebd’, vertpb2, vertpbl,
linpb, FALSE);
oel . oriented_edge := oriented_edge (‘oel’, edgel, TRUE);
oe2t . oriented_edge := oriented edge (‘oe2t’, edge2, TRUE);
oe2f . oriented_edge := oriented _edge (‘oe2f, edge2, FALSE);
oe3t . oriented_edge := oriented edge (‘oe3t’, edge3, TRUE);
oe3f . oriented_edge := oriented_edge (‘oe3f, edge3, FALSE);
oeblt . oriented_edge := oriented edge (‘oeblt, edgebl, TRUE);
oeblf . oriented_edge := oriented_edge (‘oeblf, edgebl, FALSE);
oeb2t . oriented_edge := oriented edge (‘oeb2t’, edgeb2, TRUE);
oeb2f . oriented_edge := oriented_edge (‘oeb2f, edgeb2, FALSE);

(©ISO 2000 — All rights reserved

45

ISO 10303-513:2000(E)

oeb3t . oriented_edge := oriented_edge (‘oeb3t’, edgeb3, TRUE);
oeb3f . oriented_edge := oriented_edge (‘oeb3f, edgeb3, FALSE);
oeb4t . oriented_edge := oriented_edge (‘oeb4t’, edgeb4, TRUE);
oeb4f . oriented_edge := oriented_edge (‘oeb4f, edgeb4, FALSE);
loope . edge_loop := edge_loop (loope’, [oel]);

looppar : edge_loop :=
loophyp : edge_loop
loopbase: edge_loop

edge_loop (looppar’, [oeb4t, oe2t]);
edge_loop (loophyp’, [0oeb2t, oe3f]);
edge_loop (loopbase’, [oeb4f, oeb3f,
oeb2f, oeblf]);

loopcone: edge_loop edge_loop (loopcone’, [oe2f, oebilt,

oe3t, oeb3t));

apexloop: vertex_loop vertex_loop (‘apexloop’, vertorc) ;

bcl . face_bound := face_bound ('bcl’, loopcone, TRUE) ;

bc2 . face_bound := face_bound ('bc2’, loope, FALSE) ;

be t . face_outer_bound := face_outer_bound (‘be_t', loope, TRUE);
be f . face_bound := face_bound ('be_f', loope, FALSE) ;

bpar . face_outer_bound := face_outer_bound (bpar’, looppar, TRUE);

bhyp . face_outer_bound := face_outer_bound (’bhyp’, loophyp, TRUE);
bbase : face_outer_bound := face_ outer_bound(’bbase’, loopbase, TRUE);
bcone : face_bound := face_bound (’bcone’, loopcone, TRUE) ;
vbound : face_bound := face_bound ('vbound’, apexloop, TRUE) ;
(* Faces for cone with 4 planar faces *)

curved face : face_surface := face surface (‘curved face’, [bcone,

be f], cone, TRUE);
tope_face : face surface := face surface ('tope_face’, [be_{],
ple, TRUE);
bottomc_face : face_surface := face_surface
(‘bottomc_face’, [bbase], plc, FALSE);

par_face . face surface :=
face_surface (‘par_face’, [bpar], plp, TRUE),
hyp_face . face_surface :=

face_surface (‘hyp_face’, [bhyp], plh, TRUE);

(* Faces for cone with elliptic base, vertex loop at apex *)
top_face . face_surface .= face_surface
(top_face’, [be_t, vbound], cone, TRUE);
bottome face : face surface := face_ surface (‘bottome_ face’,
[be_f], ple, FALSE);

END_PARAMETER,;
SCHEMA _DATA cone_shell_ctxt;
CONSTANT

2 == sqrt(2.0);

46 ©I1S0 2000 — All rights reserved

ISO 10303-513:2000(E)
rn3 == sqrt(3.0);
END CONSTANT;
ril = representation_item {name -> ’'vconeshell’; SUPOF(@tril);} ;
tril = topological_representation_item {SUBOF(@ril); SUPOF(@cfsl);} ;
cfsl = connected_face_set {SUBOF(@tri);
cfs_faces -> (@top_face, @bottome_face);
SUPOF(@vconeshell); } ;
r2 = representation_item {name -> ’'condfshell’ ; SUPOF(@tri2);} ;
tri2 = topological_representation_item {SUBOF(@ri2); SUPOF(@cfs2);} ;
cfs2 = connected_face_set {SUBOF(@tri2);
cfs_faces -> (@tope_face, @bottomc_face, curved_face, par_face,
hyp_face); SUPOF(@con4fshell); };
vconeshell = closed_shell {SUBOF(@cfsl); };
condfshell = closed_shell {SUBOF(@cfs2); };
END_SCHEMA DATA;
END_ CONTEXT ;
(*
E.4.3 Toroidal_segment context

This context provides the faces needed to define a segment of a torus bounded byquigaesurve
arelines, circular arcs opolylines.

Torus is centred at origin with z axis as central axis and has major and minor radii of 100 and 20.
Bounding planes are z = 0, x = 0 and x = 50. All polyline points are on toroidal surface with tolerance of
less than 10E(-6).

All bounds are defined bgdge_loos.

Basic dimensional parameters should not be varied.

")

CONTEXT toroidal_segment ;
WITH aic_elementary_brep;

PARAMETER

(©ISO 2000 — All rights reserved 47

ISO 10303-513:2000(E)

orc . length_measure := 0.0;
radl . length_measure := 100.0;
rad2 . length_measure := 20.0;
rci . length_measure := 80.0;
rco . length_measure := 120.0;
origin . cartesian_point := cartesian_point (‘origin’, [orc, orc,
orc));
pl . cartesian_point := cartesian_point ('pl’, [50.0, 62.44998,
0.0));
pcleft . cartesian_point := cartesian_point ('pcleft’, [0.0, 100.0,
0.0)]);
pbleft . cartesian_point := cartesian_point ('pbleft’, [0.0, 80.0,
0.0)]);
ptleft . cartesian_point := cartesian_point ('ptleft’, [0.0, 120.0,
0.0));
pos_Xx : direction := direction (pos_x’, [1, 0, 0]);
pos_y . direction := direction (pos_y’, [0, 1, O]);
pos_z . direction := direction (pos_z', [0, 0, 1]);
neg_x . direction := direction ('neg_x’, [-1, 0, O]);
vec_y . vector := vector ('vec_y’, pos_y, 1.0) ;
al : axis2_placement_3d := axis2_placement_3d ('al’, origin,
pos_z, pos_X) ;
a2 . axis2_placement_3d := axis2_placement_3d ('a2’, pcleft,
neg_x, pos_y) ;
a3 . axis2_placement_3d := axis2_placement_3d ('a3’, pl,
pos_X, pos_z) ;
base . plane := plane (‘base’, al) ;

pleft : plane := plane (pleft’, a2) ;
pright : plane := plane (pright’, a3) ;
torus : toroidal_surface := toroidal _surface (‘torus’, al, radl,
rad2);

circin . circle := circle (circin’, al , rci);
circout . circle := circle (circout’, al , rco);
circleft : circle := circle (circleft’, a2 , rad2);

p2 . cartesian_point =

cartesian_point ('p2’, [50.0, 62.633918, 2.392932));
p3 . cartesian_point =

cartesian_point ('p3’, [50.0, 64.92632, 8.609));
p4 . cartesian_point =

cartesian_point ('p4’, [50.0, 67.325057, 11.8123625]);
p5 . cartesian_point =

48 ©I1S0 2000 — All rights reserved

p6
p7
p8
p9
pl0
pl1
pl2
p13
pl4
p15
p16
pl7

p18

poly

11
12

vl
v2
v3
v4

edgebl :
edgetl :
edgeb?2
edgeb3
edgeb4
edget?2 :

: line
: line

. vertex_point
. vertex_point
. vertex_point
. vertex_point

ISO 10303-513:2000(E)

cartesian_point ('p5’, [50.0, 69.839261, 14.1766914));

. cartesian_point =

cartesian_point ('p6’, [50.0, 72.479126, 16.03916]);

. cartesian_point =

cartesian_point ('p7’, [50.0, 75.25605, 17.518988]);

. cartesian_point =

cartesian_point ('p8’, [50.0, 78.182821, 18.660529]);

. cartesian_point =

cartesian_point ('p9’, [50.0, 81.27384, 19.469096));

. cartesian_point =

cartesian_point ('p10’, [50.0, 84.5453828, 19.920975]);

. cartesian_point =

cartesian_point ('pll’, [50.0, 88.0159173, 19.9623578]);

. cartesian_point =

cartesian_point ('p12’, [50.0, 91.706487, 19.498351));

. cartesian_point =

cartesian_point ('p13’, [50.0, 95.6411789, 18.343994]);

. cartesian_point =

cartesian_point ('pl4’, [50.0, 99.8476928, 16.24428));

. cartesian_point =

cartesian_point ('pl15’, [50.0, 104.3580503, 12.3673625));

. cartesian_point =

cartesian_point ('pl6’, [50.0, 107.225346, 8.046179));

. cartesian_point =

cartesian_point ('pl7’, [50.0, 109.008344, 1.692583));

. cartesian_point =

cartesian_point ('p18’, [50.0, 109.0871212, 0.0]);

. polyline := polyline(poly’, [pl, p2, p3,

p4, p5, p6, p7, p8, p9,

pl0, pll, pl2, p13, pl4, pls5, pl6, pl7, pl8));
= line (11’, pl, vec y);
= line (12’, pcleft, vec y);
vertex_point (vl’, pl);
vertex_point (v2', pl8);
vertex_point ('v3’, pbleft);
vertex_point ('v4’, ptleft);

edge_curve := edge_curve (‘edgebl’, v1, v2, |1, TRUE);

edge _curve := edge_curve (‘edgetl’, vl, v2, poly, TRUE);
edge_curve := edge_curve (‘edgeb2’, v1, v3, circin, TRUE);
edge_curve := edge_curve (‘edgeb3’, v2, v4, circout, TRUE);
edge_curve := edge_curve (‘edgeb4’, v3, v4, 12, TRUE);

edge _curve := edge_curve (‘edget?2’, v3, v4, circleft, TRUE);

(©ISO 2000 — All rights reserved 49

ISO 10303-513:2000(E)

oeblt . oriented_edge := oriented_edge (‘oeblt’, edgebl, TRUE);
oeblf . oriented_edge := oriented_edge (‘oeblf, edgebl, FALSE);
oeb2t . oriented_edge := oriented_edge (‘oeb2t’, edgeb2, TRUE);
oeb2f . oriented_edge := oriented_edge (‘oeb2f, edgeb2, FALSE);
oeb3t . oriented_edge := oriented_edge (‘oeb3t’, edgeb3, TRUE);
oeb3f . oriented_edge := oriented_edge (‘oeb3f, edgeb3, FALSE);
oeb4t . oriented_edge := oriented_edge (‘oeb4t’, edgeb4, TRUE);
oeb4f . oriented_edge := oriented_edge (‘oeb4f, edgeb4, FALSE);
oetlt . oriented_edge := oriented_edge (‘oetlt, edgetl, TRUE);
oetlf : oriented_edge := oriented_edge (‘oetlf, edgetl, FALSE);
oet2t . oriented_edge := oriented_edge (‘oet2t’, edget2, TRUE);
oet2f : oriented_edge := oriented_edge (‘oet2f, edget2, FALSE);

loopb : edge_loop := edge_loop (loopb’, [oeb4t, oeb3f, oebilf,

oeb2t));
loopt : edge_loop := edge_loop (loopt’, [oeb2f, oetlt, oeb3t,

oet2f]);
loopleft : edge_loop := edge_loop (loopleft’, [oeb4f, oet2t]);
loopright : edge_loop := edge_loop (loopright’, [oeblt, oetlf]);

bbase : face_outer_bound := face_ outer_bound (’bbase’, loopb, TRUE) ;
btop . face_outer_bound := face_outer_bound ('btop’, loopt, TRUE) ;
bleft : face_outer_bound := face_outer_bound (’bleft’, loopleft,
TRUE) ;
bright : face_outer _bound := face outer_bound (bright’, loopright,
TRUE) ;

curved _face : face surface := face surface (‘curved_face’, [btop],
torus, TRUE);

base face . face_surface =

face_surface ('base_face’, [bbase], base, FALSE);
left face : face surface =

face_surface (left_face’, [bleft], pleft, TRUE);
right face : face surface :=

face_surface (‘right face’, [bright], pright, TRUE);

END_PARAMETER;

SCHEMA DATA tor_shell ctxt;
r = representation_item {name -> ’'torshell’ ; SUPOF(@tri);} ;
tri = topological representation_item {SUBOF(@ri); SUPOF(@cfs);} ;

cfs = connected face_set {SUBOF(@tri);
cfs_faces -> (@curved face, @base face, @left face, @right face);

50 ©I1S0O 2000 — All rights reserved

ISO 10303-513:2000(E)

SUPOF(@torshell); };
torshell = closed_shell {SUBOF(@cfs);} ;
END_SCHEMA DATA;
END_CONTEXT ;
(*
E.4.4 Cylinder_union_polyline context
This context provides the faces needed to define the faces of a union of two cylinders of differing radii.
It provides an example of a non-plamaiyline and of afacewith 3 bounding loops.

All bounds are defined bgdge_loogs. Basic dimensional parameters should not be varied.

")
CONTEXT cylinder_union_polyline ;
WITH aic_elementary_brep;

PARAMETER

orc . length_measure := 0.0;

radl . length_measure := 50.0;
rad2 . length_measure := 20.0;
11 . length_measure := 80.0;
12 . length_measure := -80.0;

origin : cartesian_point := cartesian_point (‘origin’,Jorc, orc, orc]);
ptop . cartesian_point := cartesian_point ('ptop’, [orc, orc, [1]);
pbase : cartesian_point := cartesian_point (‘pbase’, [orc, orc, 12]);
pright : cartesian_point := cartesian_point (‘pright’, [orc, 11, orc]);

pte . cartesian_point := cartesian_point ('pte’, [radl, orc, [1]);
pbe . cartesian_point := cartesian_point ('pbe’, [radl, orc, 12]);
pre . cartesian_point := cartesian_point ('pre’, [rad2 , 11, orc]);

pos_x : direction := direction (pos_x’, [1, 0, 0]);
pos_y : direction direction (pos_y’, [0, 1, Q));
pos_z : direction direction ('pos_z', [0, 0O, 1]);

al : axis2_placement_3d := axis2_placement_3d (‘al’, origin, pos_z,

pos_x) ;
a2 . axis2_placement_3d := axis2_placement_3d (‘a2’, origin, pos_y,

pos_Xx) ;
at : axis2_placement_3d := axis2_placement_3d (‘at’, ptop, ?, ?);
ab . axis2_placement_3d := axis2_placement_3d (‘ab’, pbase, ?, ?);

(©1S0O 2000 — All rights reserved 51

ISO 10303-513:2000(E)

ar . axis2_placement_3d := axis2_placement_3d (‘ar, pright,

pos_y, pos_X) ;
base : plane := plane ('base’, ab) ;
top . plane := plane (top’, at) ;

plright : plane := plane (plright, ar) ;
cyll : cylindrical_surface := cylindrical_surface ('cyll’, al, radl);
cyl2 : cylindrical_surface := cylindrical_surface ('cyl2’, a2, rad2);

circtop : circle := circle (circtop’, at , radl);
circhase : circle := circle ('circbase’, ab , radl);
circright : circle := circle (circright’, ar , rad2);

pl . cartesian_point :=
cartesian_point (‘pl’, [0.0, 50.0, 20.0]);
p2 . cartesian_point :=

cartesian_point ('p2’, [3.4729636, 49.8792394, 19.6961551));
p3 . cartesian_point =
cartesian_point ('p3’, [6.8404029, 49.529879, 18.793852));
p4 . cartesian_point =
cartesian_point ('p4’, [10.0, 48.9897949, 17.3205081));

p5S . cartesian_point =
cartesian_point ('p5’, [12.8557522, 48.31904, 15.320889));
p6 . cartesian_point =
cartesian_point ('p6’, [15.3208889, 47.5948565, 12.8557522));
p7 . cartesian_point =
cartesian_point ('p7’, [17.3205081, 46.904158, 10.0]);
p8 . cartesian_point =
cartesian_point ('p8’, [18.7938524, 46.3334772, 6.84040287));
p9 . cartesian_point =
cartesian_point ('p9’, [19.6961551, 45.95717, 3.4729635));
pl10 . cartesian_point =
cartesian_point ('pl10’, [20.0, 45.8257569, 0.0]);
pll . cartesian_point =

cartesian_point ('pll’, [19.6961551, 45.95717, -3.4729635]);

pl2 . cartesian_point =
cartesian_point ('pl2’, [18.7938524, 46.3334772, -6.84040287]);

p13 . cartesian_point =

cartesian_point ('pl13’, [17.3205081, 46.904158, -10.0));

pl4d . cartesian_point =
cartesian_point ('pl4’, [15.3208889, 47.5948565, -12.8557522]);

pl5 . cartesian_point =
cartesian_point ('pl5’, [12.8557522, 48.31904, -15.320889));

pl6 . cartesian_point :=
cartesian_point ('p16’, [10.0, 48.9897949, -17.3205081]);
pl7 : cartesian_point :=

52 ©I1S0O 2000 — All rights reserved

pl18
pl19
p20
p21
p22
p23
p24
p25
p26
p27
p28
p29
p30
p31
p32
p33
p34
p35

p36

poly

vl

©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

cartesian_point ('pl7’, [6.8404029, 49.529879, -18.793852));

. cartesian_point =

cartesian_point ('pl8’, [3.4729636, 49.8792394, -19.6961551));

. cartesian_point =

cartesian_point ('p19’, [0.0, 50.0, -20.0]);

. cartesian_point =

cartesian_point ('p20’, [-3.4729636, 49.8792394, -19.6961551]);

. cartesian_point =

cartesian_point ('p21’, [-6.8404029, 49.529879, -18.793852));

. cartesian_point =

cartesian_point ('p22’, [-10.0, 48.9897949, -17.3205081));

. cartesian_point =

cartesian_point ('p23’, [-12.8557522, 48.31904, -15.320889));

. cartesian_point =

cartesian_point ('p24’, [-15.3208889, 47.5948565, -12.8557522)]);

. cartesian_point =

cartesian_point ('p25’, [-17.3205081, 46.904158, -10.0]);

. cartesian_point =

cartesian_point ('p26’, [-18.7938524, 46.3334772, -6.84040287));

. cartesian_point =

cartesian_point (p27’, [-19.6961551, 45.95717, -3.4729635]);

. cartesian_point =

cartesian_point ('p28’, [-20.0, 45.8257569, 0.0]);

. cartesian_point =

cartesian_point (p29’, [-19.6961551, 45.95717, 3.4729635]);

. cartesian_point =

cartesian_point (p30’, [-18.7938524, 46.3334772, 6.84040287));

. cartesian_point =

cartesian_point ('p31’, [-17.3205081, 46.904158, 10.0));

. cartesian_point =

cartesian_point (p32’, [-15.3208889, 47.5948565, 12.8557522));

. cartesian_point =

cartesian_point (p33’, [-12.8557522, 48.31904, 15.320889));

. cartesian_point =

cartesian_point ('p34’, [-10.0, 48.9897949, 17.3205081));

. cartesian_point =

cartesian_point (p35’, [-6.8404029, 49.529879, 18.793852));

. cartesian_point =

cartesian_point ('p36’, [-3.4729636, 49.8792394, 19.6961551));

. polyline := polyline (poly’, [pl, p2, p3, p4, p5, p6,

p7, p8, p9, pl0, pll, pl2, pl13, pld, pl5, pl6, pl7,
p18, p19, p20, p21, p22, p23, p24, p25, p26, p27,
p28, p29, p30, p31, p32, p33, p34, p35, p36, pll);

. vertex_point := vertex_point (vl’, pl);

53

ISO 10303-513:2000(E)

v2 . vertex_point := vertex_point ('v2', pte);
v3 . vertex_point := vertex_point ('v3’, pbe);
v4 . vertex_point := vertex_point ('v4’, pre);

edgemO : edge_curve := edge_curve (‘edgemO’, v1, vi, poly, TRUE);
edgetl : edge_curve := edge_curve (‘edgetl’, v2, v2, circtop, TRUE);
edgeb2 : edge_curve := edge_curve (‘edgeb2’, v3, v3, circbhase, TRUE);
edger3 : edge_curve := edge_curve (‘edger3’, v4, v4, circright, TRUE);

oemOt . oriented_edge := oriented_edge (‘'oemOt, edgemO, TRUE);
oemOf . oriented_edge := oriented_edge (‘'oemOf, edgemO, FALSE);
oetlt . oriented_edge := oriented_edge (‘oetlt, edgetl, TRUE);
oetlf : oriented_edge := oriented_edge (‘oetlf, edgetl, FALSE);

oeb2t . oriented_edge := oriented_edge (‘oeb2t’, edgeb2, TRUE);

oeb2f . oriented_edge := oriented_edge (‘oeb2f, edgeb2, FALSE);
oer3t . oriented_edge := oriented_edge (‘oer3t’, edger3, TRUE);
oer3f . oriented_edge := oriented_edge (‘oer3f, edger3, FALSE);

loopb : edge_loop := edge_loop (loopb’, [oeb2f]);
loopt : edge_loop := edge_loop (loopt, [oetlt]);
loopmidt : edge_loop := edge_loop (loopmidt’, [oemOt]);

looprt : edge_loop := edge_loop (looprt’, [oer3t]);
loopbt : edge_loop := edge_loop (loopbt’, [oeb2t]);
looptf : edge_loop := edge_loop (looptf, [oetlf]);

loopmidf : edge_loop := edge_loop (loopmidf, [0emOf]);
looprf : edge_loop edge_loop (looprf, [oer3f]);

bbase : face_outer_bound := face_outer_bound (‘bbase’, loopb, TRUE);
btop . face_outer_bound := face_outer_bound (’btop’, loopt, TRUE) ;
bright : face_outer_bound := face_outer_bound (bright’, looprt, TRUE);
bmidt : face_bound := face bound ('bmidt’, loopmidt, TRUE) ;

bmidf : face_bound := face bound ('bmidf, loopmidf, TRUE) ;

bcyltop : face_bound := face bound (bcyltop’, looptf, TRUE) ;

bcylb : face bound := face bound ('bcylb’, loopbt, TRUE) ;

bcylm : face bound := face bound ('bcylm’, loopmidt, TRUE) ;
bcy2m : face bound := face bound ('bcy2m’, loopmidf, TRUE) ;
bcy2r : face_bound := face_bound (bcy2r, looprf, TRUE) ;

cyl facel : face surface := face surface ('cyl facel’,

[bcyltop, bcylm, bcylb], cyll, TRUE);
cyl face2 : face_surface := face surface ('cyl face2’,

[bcy2m, bcy2r], cyl2, TRUE);

base face : face surface =
face_surface (‘base_face’, [bbase], base, FALSE);
top_face . face_surface =
face_surface (‘top_face’, ’'top_face’, [btop], top, TRUE);

54 ©I1S0 2000 — All rights reserved

ISO 10303-513:2000(E)

right_face : face_surface :=
face_surface (right_face’, [bright], plright, TRUE);

END_PARAMETER,;
SCHEMA_DATA cyl _un_poly_ctxt;
ricx = representation_item {name -> ’'cxcshell’ ; SUPOF(@tricx);} ;
tricx = topological_representation_item {SUBOF(@ricx); SUPOF(@cfscx);};
cfscx = connected_face_set {SUBOF(@tricx);

cfs_faces -> (@cyl_facel, @cyl face2, @base face, @top_face,

@right_face); SUPOF(@csxshell); } ;

cxcshell = closed_shell {SUBOF(@cfscx);} ;
END_SCHEMA_DATA;

END_CONTEXT ;

(*

(©ISO 2000 — All rights reserved 55

ISO 10303-513:2000(E)

Index

cone shell context
cylinder sphere shell context
cylinder union polyline context

elementary B-rep
abstract test cases
AIC short listing
contexts
definition
test purposes
elementary geometry
definition
elementary_brep_shape_representation
AIC diagrams
AIC EXPRESS short listing entity

test case ebl: cylinder and sphere faces
test case eb2: hollow cylinder sphere

test case eb3: torus segment

test case eb4: intersecting cylinders polyline
test case eb5: cone with plane faces

test case eb6 : mapped items

test case eb7 : use of transformation
toroidal segment context

56

43
41
51

25
41

21

15

26
28
31
33
34
36
39
47

©ISO 2000 — All rights reserved

ISO 10303-513:2000(E)

ICS 25.040.40

Price based on 56 pages

© 1SO 2000 — All rights reserved

