FUNCTION derive_function_domain

(* SCHEMA step_merged_ap_schema; *)
-- IN AP242
FUNCTION derive_function_domain
      (func : maths_function ) : tuple_space;
   LOCAL
      typenames : SET OF STRING := stripped_typeof(func);
      tspace : tuple_space := make_listed_product_space([]);
      shape : LIST OF positive_integer;
      sidxs : LIST OF INTEGER := [ 0 ];
      itvl : finite_integer_interval;
      factors : LIST OF finite_integer_interval := [];
      is_uniform : BOOLEAN := TRUE;
   END_LOCAL;
      IF 'FINITE_FUNCTION' IN typenames THEN
         RETURN (derive_finite_function_domain(func\finite_function.pairs));
      END_IF;
      IF 'CONSTANT_FUNCTION' IN typenames THEN
         RETURN (domain_from(func\constant_function.source_of_domain));
      END_IF;
      IF 'SELECTOR_FUNCTION' IN typenames THEN
         RETURN (domain_from(func\selector_function.source_of_domain));
      END_IF;
      IF 'ELEMENTARY_FUNCTION' IN typenames THEN
         RETURN (derive_elementary_function_domain(func\elementary_function.func_id));
      END_IF;
      IF 'RESTRICTION_FUNCTION' IN typenames THEN
         RETURN (one_tuples_of(func\restriction_function.operand));
      END_IF;
      IF 'REPACKAGING_FUNCTION' IN typenames THEN
         IF func\repackaging_function.input_repack = ro_nochange THEN
            RETURN (func\repackaging_function.operand.domain);
         END_IF;
         IF func\repackaging_function.input_repack = ro_wrap_as_tuple THEN
            RETURN (factor1(func\repackaging_function.operand.domain));
         END_IF;
         IF func\repackaging_function.input_repack = ro_unwrap_tuple THEN
            RETURN (one_tuples_of(func\repackaging_function.operand.domain));
         END_IF;
         RETURN (?);
      END_IF;
      IF 'REINDEXED_ARRAY_FUNCTION' IN typenames THEN
         shape := shape_of_array(func\unary_generic_expression.operand);
         sidxs := func\reindexed_array_function.starting_indices;
         REPEAT i := 1 TO SIZEOF(shape) BY 1;
            itvl := make_finite_integer_interval(sidxs[i], sidxs[i] + shape[i] - 1);
            INSERT( factors, itvl, i - 1 );
            IF shape[i] <> shape[1] THEN
               is_uniform := FALSE;
            END_IF;
         END_REPEAT;
         IF is_uniform THEN
            RETURN (make_uniform_product_space(factors[1], SIZEOF(shape)));
         END_IF;
         RETURN (make_listed_product_space(factors));
      END_IF;
      IF 'SERIES_COMPOSED_FUNCTION' IN typenames THEN
         RETURN (func\series_composed_function.operands[1].domain);
      END_IF;
      IF 'PARALLEL_COMPOSED_FUNCTION' IN typenames THEN
         RETURN (domain_from(func\parallel_composed_function.source_of_domain));
      END_IF;
      IF 'EXPLICIT_TABLE_FUNCTION' IN typenames THEN
         shape := func\explicit_table_function.shape;
         sidxs[1] := func\explicit_table_function.index_base;
         REPEAT i := 1 TO SIZEOF(shape) BY 1;
            itvl := make_finite_integer_interval(sidxs[1], sidxs[1] + shape[i] - 1);
            INSERT( factors, itvl, i - 1 );
            IF shape[i] <> shape[1] THEN
               is_uniform := FALSE;
            END_IF;
         END_REPEAT;
         IF is_uniform THEN
            RETURN (make_uniform_product_space(factors[1], SIZEOF(shape)));
         END_IF;
         RETURN (make_listed_product_space(factors));
      END_IF;
      IF 'HOMOGENEOUS_LINEAR_FUNCTION' IN typenames THEN
         RETURN (one_tuples_of(make_uniform_product_space(factor1(func\homogeneous_linear_function.mat.range), func\homogeneous_linear_function.mat\explicit_table_function.shape[func\homogeneous_linear_function.sum_index])));
      END_IF;
      IF 'GENERAL_LINEAR_FUNCTION' IN typenames THEN
         RETURN (one_tuples_of(make_uniform_product_space(factor1(func\general_linear_function.mat.range), func\general_linear_function.mat\explicit_table_function.shape[func\general_linear_function.sum_index] - 1)));
      END_IF;
      IF 'B_SPLINE_BASIS' IN typenames THEN
         RETURN (one_tuples_of(make_finite_real_interval(func\b_spline_basis.repeated_knots[func\b_spline_basis.order], closed, func\b_spline_basis.repeated_knots[(func\b_spline_basis.num_basis + 1)], closed)));
      END_IF;
      IF 'B_SPLINE_FUNCTION' IN typenames THEN
         REPEAT i := 1 TO SIZEOF(func\b_spline_function.basis) BY 1;
            tspace := assoc_product_space(tspace, func\b_spline_function.basis[i].domain);
         END_REPEAT;
         RETURN (one_tuples_of(tspace));
      END_IF;
      IF 'RATIONALIZE_FUNCTION' IN typenames THEN
         RETURN (func\rationalize_function.fun.domain);
      END_IF;
      IF 'PARTIAL_DERIVATIVE_FUNCTION' IN typenames THEN
         RETURN (func\partial_derivative_function.derivand.domain);
      END_IF;
      IF 'DEFINITE_INTEGRAL_FUNCTION' IN typenames THEN
         RETURN (derive_definite_integral_domain(func));
      END_IF;
      IF 'ABSTRACTED_EXPRESSION_FUNCTION' IN typenames THEN
         REPEAT i := 1 TO SIZEOF(func\abstracted_expression_function.variables) BY 1;
            tspace := assoc_product_space(tspace, one_tuples_of(values_space_of(func\abstracted_expression_function.variables[i])));
         END_REPEAT;
         RETURN (tspace);
      END_IF;
      IF 'EXPRESSION_DENOTED_FUNCTION' IN typenames THEN
         RETURN (values_space_of(func\expression_denoted_function.expr)\function_space.domain_argument);
      END_IF;
      IF 'IMPORTED_POINT_FUNCTION' IN typenames THEN
         RETURN (one_tuples_of(make_listed_product_space([])));
      END_IF;
      IF 'IMPORTED_CURVE_FUNCTION' IN typenames THEN
         RETURN (func\imported_curve_function.parametric_domain);
      END_IF;
      IF 'IMPORTED_SURFACE_FUNCTION' IN typenames THEN
         RETURN (func\imported_surface_function.parametric_domain);
      END_IF;
      IF 'IMPORTED_VOLUME_FUNCTION' IN typenames THEN
         RETURN (func\imported_volume_function.parametric_domain);
      END_IF;
      IF 'APPLICATION_DEFINED_FUNCTION' IN typenames THEN
         RETURN (func\application_defined_function.explicit_domain);
      END_IF;
      RETURN (?);
END_FUNCTION;

Referenced By

Defintion derive_function_domain is references by the following definitions:
DefinitionType
 maths_function ENTITY


[Top Level Definitions] [Exit]

Generated by STEP Tools® EXPRESS to HTML Converter
2017-01-19T11:17:24-05:00