Introduction to STEP-NC

Cutting Tools for Milling

STEP Tools, Inc.
14 First Street, Troy, NY 12180
(518) 687-2848 / (518) 687-4420 fax
http://www.steptools.com
Overview

• Cutting tools
 – Describe an ideal required tool for an operation.
 – An NC controller may select a different actual tool.

 – Only important parameters should be set.
 » The more constrained the tool is, the less flexibility the controller will have

• Questions
 – What tools are available?
 – How do you associate a tool with an operation?
 – How do you specify the parameters of a tool?
• Every operation can have a tool associated.
 – Represents tool requirements, not a physical tool on a machine.
 – Potential for some best-fit optimization by the controller.

• Previously, G&M codes just reference tool #1, #2, etc.
 – Human must make sure that #1 corresponds to the right thing.
 – Controller not able to add any value to the process.
Harmonization with ISO 13399

- **ISO 13399 : Cutting Tool Data Representation and Exchange**
 - For tool maker to publish tool catalogs
 - Has more attributes than ISO 14649, but some are useless for machining
 - Considered too rigid and does not support new concepts in the tooling industry.
 » Not useable in its present form, moving towards integration with STEP.

- **Cutting Tool Data Representation in ISO 14649**
 - For tool consumer to describe tool requirements
 - Currently, only data model for milling cutting tools are defined
 - Sufficient information for machining
 - Harmonized with the 13399 definitions that are available
Cutting Tools for Milling ARM

Tool Body has no attributes

Milling Tool Body has attributes for number of teeth, hand of cut, coolant through tool, pilot length

Many Subtypes!

Very few new attributes though
Milling Tool Body

- milling_cutter
 - facemill
 - t_slot_mill
 - dovetail_mill
 - woodruff_keyseat_mill
 - side_mill
 - thread_mill
 - endmill
 » tapered_endmill
 » ball_endmill
 » bullnose_endmill

- boring_tool
- reamer
 - tapered_reamer
 - combined_drill_and_reamer

- centerdrill
- drill
 - spade_drill
 - twist_drill
 - tapered_drill

- counterbore
 - backside_counterbore

- countersink
 - backside_countersink

- tap
 - tapered_tap
 - combined_drill_and_tap

- threading_tool
- user_defined_tool
• Future parts will describe single point tools for turning
 – ARM hierarchy may end up changing a bit.
 – ARM hierarchy may also end up being reorganized if ISO 13399 work picks up again.

 – Should not change existing information requirements only the way they are documented.
STEP-NC High-Level AIM View

- **Workpiece** (product)
- **Features** (shape aspects)
- **Workingsteps** (action methods)
- **Operation** (action method)
- **Cutting Tool** (action resource)
- **Strategies, Technology, and Toolpaths** (action method)

Resource Properties
- Workpiece Geometry (shape property)
- Control Flow (action method relationships)
- action properties

Action Properties
- Features
- Operation
- Strategies, Technology, and Toolpaths

© Copyright 2001 — STEP Tools, Inc.
Tool AIM Representation

• Tool is equipment required by the operation
 – Use action resource subtype machining_tool.
 – action resource refers to all of the action methods that use it through the “usage” attribute.
 – Also has a “kind” attribute that categorizes the resource
 » A/R Type has value “milling cutting tool”
Tool Body and Dimension AIM

- Tool Body and Dimension are complex properties
 - Mapped as subtypes of representation
 » Different tool bodies distinguished using the representation.name attribute
 - Will contain multiple representation items
 - Tool Dimension related to Tool Body using a representation relationship
20mm Endmill Tool Example

The Operation

bottom_and_side_milling_operation
desc = “rough milling”

machining_tool

action_resource_type
name = “milling cutting tool”

resource_property
name = “tool body”

resource_property
representation
name = “endmill”

measure_with_unit
name = “number of teeth”
value = 4 teeth

descriptive_measure
name = “hand of cut”
value = “left”

machining_tool dimension representation

measure_with_unit
name = “diameter”
value = 20 mm

measure_with_unit
name = “tool_top_angle”
value: 45 deg

rep items for other parameters
Summary

• Cutting tools
 – Describe an ideal required tool for an operation.
 – An NC controller may select a different actual tool.
 – Only important parameters should be set.
 » The more constrained the tool is, the less flexibility the controller will have

• Tool associated with operation
 – Through action resource usage field.

• Parameters specified using representation subtypes for tool body and dimension
 – Type of tool body identified using representation name