Fundamentals of STEP Implementation

David Loffredo
loffredo@steptools.com
STEP Tools, Inc., Rensselaer Technology Park, Troy, New York 12180

A) Introduction

The STEP standard documents contain such a large amount of extremely detailed
information that it can be difficult for newcomers to sort it all out. This paper presents an
overview of the software development process for someone who is interested in a project
that makes use of STEP to exchange product model data. This paper is targeted at
technically knowledgeable software developers who are not necessarily familiar with
STEP or the issues involved in STEP implementation.

B) Structure Of STEP

The STEP standard is divided into many parts. These parts cover topics such as methods
used to present the standard, implementation architectures, conformance testing
procedures, resource information models, and application protocols. The STEP parts can
be divided into Description Methods, Information Models, Application Protocols,
Implementation Methods, and Conformance Tools.

Infrastructure

Description Methods
#11 EXPRESS
#12 EXPRESS-I

Information Models

Application Protocols \
#201 Explicit Drafting
#202 Assoc. Drafting

/ #203 Config Ctl. Design
Implementation Methods\
#21 Physical File f Application \
#22 SDAI Operations Resource Models

#23 SDAI C++ #101 Drafting

/ #102 Ship Structures

General Resources
#41 Miscellaneous
#42 Geom & Topology
#43 Features

Figure One — High Level Structure of STEP

Conformance Testing
#31 General Concepts
#32 Test Lab Regs.
#33 Abstract Test Suites

One of the most important aspects of STEP is its extensibility. This extensibility is the
result of the decision to base STEP on an information modeling language. The
EXPRESS language is the fundamental Description method of STEP. Future
enhancements to STEP may introduce other description methods, but for right now,
EXPRESS is the fundamental tool used to describe the information models and
application protocols that are the bulk of the standard.

The Information Models and Application Protocols describe the data structures and
constraints of a complete product model. Each application protocol combines one or
more information models and places additional constraints on those models. For
example, the application protocol for 2D drafting combines parts 42 and 46 and restricts
part 42 so that it only describes two-dimensional data.

The Implementation Methods are protocols that are driven by the EXPRESS language.
They are used to move real EXPRESS-defined application data between tools, and to
make that data available to application developers. The first implementation method’ is
the STEP physical exchange file, often referred to as Part 21 file format. The Part 21
specification is the medium that STEP provides to move EXPRESS-defined data
between databases and CAD systems.

The Standard Data Access Interface (SDAI) is another implementation method that

software developers can use to manipulate data defined by EXPRESS.

defines programming language bindings for C, C++, and Fortran.
Some of the STEP parts are listed below:
Part Document Title

1. Overview & Fundamental Principles

11....... EXPRESS Language

12....... EXPRESS-I Language Reference Manual
21....... Clear Text Encoding of the Exchange Structure
22....... Standard Datachess Interface

23....... SDAI C++ Language Binding

24....... SDAI C Language Binding

25....... SDAI FORTRAN Language Binding

31....... Conformance Testing - General Concepts
32....... Conformance Testing - Test Lab Requirements
33....... Conformance Testing - Abstract Test Suites
34...... Conformance Testing - Abstract Test Methods
41....... Product Description and Support

42....... Geometric and Topological Representation
43....... Representation Structures

44....... Product Structure Configuration

45....... Materials

46....... Visual Presentation

47 Shape Tolerances

48....... Form Features

49....... Process Structure and Properties

101..... Draughting Resources

102.....Ship Structures

103..... Electrical/Electronics Connectivity
104.....Finite Element Analysis

105.....Kinematics

201..... Explicit Draughting

202.....Associative Draughting

203.....Configuration Controlled Design

204Mechanical Design Using Boundary Representation

205.....Mechanical Design Using Sacé Representation

The specification

206.....Mechanical Design Using Wireframe Representation

207.....Sheet Metal Dies and Blocks
208..... Life Cycle Product Change Process

209.....Design Through Analysis of Composite and Metallic Structures
210.....Electronic Printed Circuit Assembly, Design and Manufacturing

211.....Electronics Test Diagnostics and Remanufacture
212.....Electrotechnical Plants

213.....Numerical Control Process Plans for Machined Parts
214.....Core Data for Automotive Mechanical Design Processes
215..... Ship Arrangement

216..... Ship Moulded Forms

217.....Ship Piping

218.....Ship Structures

219.....Dimensional Inspection Process Planning for CMMs

220..... Printed Circuit Assembly Manufacturing Planning
221.....Functional Data and Schematic Representation for Process Plans
222.....Design Engineering to Manufacturing for Composite Structures
223.....Exchange of Design and Manufacturing DPD for Composites
224.....Mechanical Product Definition for Process Planning

225..... Structural Building Elements Using Explicit Shape Rep

226..... Shipbuilding Mechanical Systems

The PDES/STEP standard and EXPRESS are important to the design and manufacturing
community for several reasons:

The standard containslarge body of definitions for engineering data The
scope of the definitions include mechanical and electrical CAD, manufacturing
processes, and specialty domains such as composite materials and shipbuilding.

The EXPRESS language definesnstraints as well as data structures. These
constraints describe a correctness standard that must be met before an engineering
data set is sent to any other application.

The standard defines a logical description th&edinology independent Today

many believe object-oriented database systems to be the best kind of database for
engineering data. In the past, most would have advocated relational systems. In
the future a new kind of system may be invented. Furthermore, the "best" system

may vary from application to application.

The standard allows engineering applications to exchange information about
product and process designs.

C) What Does it Mean to Implement STEP?

The STEP standard covers the exchange of product model data. A STEP implementation
is an application that uses this standard to exchange product information, or makes it
possible for other applications to do so. Thus, STEP implementations cover the range
from CAD systems, bill of materials systems and so forth, to stand-alone translators, to
packages that make it possible to develop the above systems.

The STEP standard categorizes the various types of product data around Application

Protocols (AP). Each AP is a formal document describing the activities in the lifecycle
of a product, called the Application Activity Model (AAM); the pieces of product
information that are needed for the activities, called the Application Reference Model
(ARM); and finally, a formal EXPRESS information model that captures everything in
the ARM and ties it to a library of pre-existing definitions. This is referred to as the
Application Interpreted Model (AIM). In addition, STEP defines collections of common
definitions that can be shared between Application Protocols. These are called
Application Integrated Constructs (AICs) and may be of interest if you are planning to
use data defined by several APs in your application.

In general, translators and interfaces to specific engineering systems will support for
specific application protocols, while more general tool kit packages can usually be
tailored to any AP.

The AP defines the collection of information required as a base exchange unit. Often, in
existing environments, the product data described by an AP is distributed between a
number of different engineering systems. In such a situation, it may be necessary to
build interfaces to several systems, as well as tools to assemble the resultant partial data
into one complete exchange unit.

In addition to the EXPRESS language and the Application Protocols, STEP Part 21
defines an EXPRESS-driven exchange file format. Any implementation should be able
to read and write these STEP exchange files. In addition, it may be desirable to use the
APs as the definition for a shared database.

The first question to answer when planning a STEP implementation is what application
protocol will be used. When this is clear, you should get a copy of the AP document
from the appropriate sources and examine it closely.

The AP documents can be quite long, but most of this is the Application Interpreted
Model. You will become familiar with this eventually, but initially you should begin by
familiarizing yourself with the Application Reference Model. The ARM describes the
basic Application Objects that an implementor should be concerned with. In
familiarizing yourself with the ARM, you should try to understand what each application
object represents and consider where the information contained in it will come from or
go to.

The application objects are divided into subject areas called units of functionality. These
provide a logically complete subset of information about some particular aspect of the
product. For example, the Design Activity Control UOF in AP 203 is concerned with
tracking modifications to a product over it's lifetime. The application objects in this
UOF are: Change Order, Change Request, Start Order, Start Request, Work Order, and
Work Request.

Looking at AP 203, we see that it contains about 36 application objects, distributed
among nine units of functionality. The UOFs are Authorization, Bill Of Material, Design

Information, Effectivity, End Item Identification, Part Identification, Shape, and Source
Control.

Once you have a handle on the ARM and the Application Objects, it is time to consider
the AIM. The AIM is considerably more involved than the ARM, but it represents the
same basic information. The AIM is an EXPRESS information model that formally
describes the application objects in terms of a library of pre-existing definitions, called
the generic resources or integrated resources. This highly normalized representation
contains the structures as well as the constraints that those structures must obey. The
AIM is used as the basis for the implementation and data exchange.

An easier way to become familiar with the AIM is to look at the EXPRESS-G diagrams

in the AP document. EXPRESS-G is a formal diagrammatic form for the EXPRESS
language. EXPRESS-G diagrams contain the data structures, inheritance relationships,
attributes and relationships between structures in the EXPRESS information model. The
EXPRESS-G diagrams are very good at conveying the data structures associated with an
information model, but they do not contain the rules and constraints that apply to the
structures.

At this stage you should have chosen the AP for your implementation. You will have
reviewed and understand the ARM of the AP, and will have determined where the
appropriate information will come from or go to in your system(s). Furthermore, you
should have reviewed the AIM, and determined how this maps to the ARM objects that
you are interested in. Now that you have an understanding of the application protocol and
the issues involved, it is time to move on to the software system design and
implementation.

D) Software System Design

STEP implementations fall into several categories. Translators take data from pre-
existing systems and convert it into STEP AP defined data. The tool converts non-STEP
data into STEP data. Other applications might take STEP data as input, and then
perform some function on it, generating more STEP output. An example of such a thing
would be an application that takes partial AP information from several sources, like
geometry from a CAD system and configuration information from a CM system, and
then merges them into a complete AP-203 exchange file.

Another category might be an application that takes specific AP data and performs some
analysis on it, such as a finite element package or a geometry visualizer.

These applications should all work from STEP exchange files and possibly a shared
database as well, so it is important to consider how the application will be tied to the
EXPRESS information models of the various APs that they will work with. A number of
techniques have been used successfully on previous implementations.

Each technique has characteristics that make it useful for a certain class of problems, and
implications that affect where to allocate your resources. The sections below describe
common STEP development tools along with several of the more common
implementation architectures and the types of problems that they work best on.

Other documents exist describe the overall architectures for developing STEP systems
from scratch (PTIO17 -- "An Architecture for Implementing STEP"??)

E) STEP Development Tools

The task of producing a STEP implementation can be considerably simplified by making
use of pre-existing STEP development tools. A number of STEP development tools and
environments are available, each with their own special features. This section describes
some of the tools and services you may wish to take advantage of.

It is possible to construct an implementation from scratch. In general, this requires a
significant outlay of time and effort developing support software before you even begin
to address your original tasks. This approach may not be the most efficient use of
resources because of the amount of work involved in setting up a physical file
reader/writer, creating all of the classes by hand, creating all the necessary routines to
handle traversal, memory management and so forth.

A development environment should provide libraries of functions to create, destroy,
access and update EXPRESS-defined data. These libraries may take the form of one of
the SDAI bindings, or some other binding, but all should provide I/O from either
physical files or database systems. In addition, query and traversal functions, memory
management, and other CASE-oriented services may be provided.

These packages are often written around a data-dictionary, so that they can handle
structures defined by any EXPRESS schema. Libraries of functions for specific
information models might also be provided, such as translations and transformations,
facetting, solid modeling packages and so forth.

Since the EXPRESS language is meant to be computer sensible, a compiler is often
provided to transform the EXPRESS into a variety of useful forms, such as C++ classes
or SQL database definitions.

Other tools may browse STEP physical files, help with constraint validation, provide
assistance in EXPRESS model development, EXPRESS-G diagram development,
translations, geometry visualization.

F) EXPRESS Early- bound Applications

Once you have assembled the tools you plan to use, you can begin application
development. In general, the implementation techniques can be classified into two
groups, early and late binding, depending on how the original EXPRESS information
model is made available to the software environment.

An early binding system makes the EXPRESS information model available as specific
programming language data structures for each different definition in the EXPRESS
model. For example, an early binding such as the SDAI C++ would contain specific C++
classes for each definition in the AP-203 AIM. One major advantage to this approach is
that the compiler can do extensive type checking on your application, detecting conflicts
at compile time. Special semantics or operations can also be captured as operations tied
to a particular data structure.

Most early-bindings to date use C++ as the target language. C++ works well in an early

binding because it has strong type checking, supports inheritance, and allows methods to
be attached to classes. Depending upon your choice of tools, a library of classes for your
AP may already exist. If it does not, you will need to generate one.

Early bindings are usually produced by an EXPRESS compiler. The compiler will parse,
resolve, and check the AP AIM model, then passes control to a code generator to produce
data structures for that model. EXPRESS entity definitions are usually converted to C++
classes, type definitions are are converted to either classes or typedefs, and the EXPRESS
inheritance structure is mapped onto the C++ classes. Each class should have access and
update methods for the stored attributes, possibly access methods for simple derived
attributes, and constructors to initialize new instances.

Below is a very simple EXPRESS entity definition that would be translated to a C++
class. The details of the C++ class vary from package to package, but all would provide
access and update methods for the X and Y attributes:

ENTITY Point;
X : REAL;
y : REAL;
END_ENTITY;

Once you have the classes, you can begin to write your application code. The binding

should let you create instances of the classes, populate them, and write them out to a
STEP physical file. It should also be able to read a file and present the contents to you as
instances of your classes.

In the example C++ code below, we create a Point object and fill in some of its
attributes:

[* Create a point using the default constructor

* and use the update methods to set its values. */
SdaiModelH mod;

PointH pointl = SdaiCreate(mod,Point);

pointl->x (1.0);

pointl->y (0.0);

Here the object is created using a special version of the "new" operator that handles
persistent objects, and the attribute values are set using specialized member functions for
each. As you continue development, you may find it useful to attach additional methods

to the C++ classes to handle the operations unique to your problem domain.

G) EXPRESS Data-Dictionary Applications

Another way to make the EXPRESS information model available to a software
environment is through a data dictionary. A late binding system uses an EXPRESS data
dictionary to handle access to data values.

If you chose to use a late binding such as the SDAI C, you will not need to generate
special data structures. Generally only one data structure is used for all of the definition
in the EXPRESS model. You still may need to compile the EXPRESS to produce the
data dictionary.

Data values are found by queries against the data dictionary. As you write your
application code, you will most likely get and retrieve values using a few simple
functions. In the example SDAI C code below, we create a Point object and fill in some
of its attributes:

[* create new instances */

SdaiApplinstance pointl;

pointl = sdaiCreatelnstanceBN (myModel, "Point");
sdaiPutAttrBN (pointl, "X", sdaiREAL, 1.0);
sdaiPutAttrBN (pointl, "Y", sdaiREAL, 0.0);

Here the object is created by a function that takes the name of the type, and the attributes
are set using a similar function that takes the attribute names. The important point is that
all access is done through the names of the types and attributes, rather than by specialized
functions for each.

In general, late bindings are most useful in programming environments that do not

support strong type checking, and in software that works on data from a common subset
of multiple EXPRESS schemas. Also the EXPRESS model stored in the dictionary can

change somewhat without necessarily affecting your application.

The biggest advantage to this approach may be simplicity. An average AIM can contain
upwards of 200 definitions, each of which may translate to one or more C++ classes in an

early binding. All of these classes must be generated, compiled and linked before
producing your application. A data dictionary-driven binding requires less initial work
and lends itself to faster prototyping.

The two disadvantages to late binding approaches are the lack of compile-time type
checking and difficulty of programming. These are not major issues in prototypes or
small applications, but will eventually surface in larger systems.

H) Other Approaches

The two approaches described above are not the only possibilities. A mixed binding
approach provides the advantages of an early binding (compile-time type checking and
and semantics as functions on a class) without the complexity introduced by an extreme
number of classes.

A mixed binding takes advantage of the observation that applications rarely use all of the
structures defined by an AP AIM. The subset of structures that are used, called the
working set, can be early-bound, while the rest of the AP is late-bound. All data is still
available, but the application development process is simplified. The number of classes
and files that are needed are reduced dramatically, resulting in quicker compiles, simpler
source control, and more rapid development.

Another, more labor-intensive, approach would be to hand-generate an early binding for
a particular AP. Such a binding would not need to be based directly on the AIM
EXPRESS model, but could be customized to provide a simplified view of the data. Any
data created using this binding should be mapped into the underlying AIM entities when
it is written out.

Although this approach might provide a simplified programming interface, there are
some drawbacks to be aware of. Aside from the increased labor involved in defining and
implementing the binding, this method requires that you understand the AP AIM
completely, and be able to predict how it will be used. A specialized binding would also
need to be documented as thoroughly as the AP AIM it replaces. Each AP document is
an extremely detailed book -- the AP-203 spec is over 650 pages long. Reproducing that
level of detail could be difficult.

) Scaling Up

Initially, you should choose a very simple subset of your problem area for a prototype
application. For example, with a CAD interface, you might try transferring one or two
pieces of simple geometry. This will let you focus on the mechanics of application
development, such as the target language, compiling, linking, and so forth.

10

Once a prototype is running, you should continue to expand the range of information
handled. You will be more familiar with the bindings, and any initial set up problems
will be behind you. You can concentrate on the semantic issues rather than the
mechanical ones, and continue to expand your coverage of the problem area.

Some projects may need to move an implementation from shared files to a central
transaction-controlled database. This process is not as straightforward as the
development of a file-oriented system. Different databases are suited to different kinds of
applications. For example, object oriented databases and file systems offer navigational
access and the performance needed to implement CAD applications, while relational
database contain offer query-based access to large repositories of information.

Although it is technology-neutral, EXPRESS allows for information models that
challenge the capabilities of many existing database systems. Implementations may
require heavy encoding to represent the full range of EXPRESS structures within a target
database system. Tools are available from various vendors to help you do this. You
should have a clear understanding of the features you are looking for in a database
implementation and the tradeoffs they will imply.

J) Constraints and Correctness

The EXPRESS language has the ability to capture rules and constraints. These rules and
constraints are the most formal representation of the original design intent of the AP
developers, and can be used to check the data that you are producing.

You can try to apply these rules and constraints to your implementation by hand, either
by looking at the data directly or writing code to evaluate the conditions set forth by the
rules. Another way would be to use an automated EXPRESS tool that can interpret the
AIM source and evaluate the rules and constraints on a data set.

At this stage of the project, you should begin exchanging data with test sites to detect any
semantic problems and to gain confidence in your implementation. You may also want
to search for a conformance suite for your chosen application protocol. As time goes on
suites will appear for each of the application protocols. These conformance suites will
emphasize the semantics associated with the application protocol as well as the syntax of
the exchange files.

K) Summary
As we have seen, the first task in a STEP implementation is to determine the proper

application protocol for your problem area. After familiarizing yourself with the correct
application protocol, you should examine your project requirements and select tools that

11

will help you to meet those requirements. We have discussed some of the tools available,
along with software implementation styles like early and late bindings.

Once the AP and support tools are in place, you should produce a simple prototype to
gain experience, and troubleshoot the mechanics of compiling, linking and so forth. As
your confidence grows, you should introduce more and more functionality. As your
project develops, you should use the EXPRESS rules and constraints, exchange data with
test sites and make use of conformance test suites to verify the correctness of your
implementation.

At this point your implementation should be running and well along the way towards
completion. The major elements of a STEP implementation should all be in place and
only incremental improvements related to the problem domain should be needed. Time
to start planning your next project!

12

