
 Manufacturing Integration using the STEP-NC DLL

 1 of 14

Manufacturing Integration using the STEP-NC DLL
Martin Hardwick,

ISO STEP-Manufacturing
RPI & STEP Tools, Inc.
hardwick@steptools.com

Abstract
The STEP-NC DLL is a data pipe for connecting design and manufacturing systems. It
enables the assembly of data from design, process planning, machining and inspection
applications into an integrated data set that shop floor applications can use to deliver new
value to end users. Applications that have been implemented using the DLL include just
in time simulation and verification, integrated machining and inspection, five axis cutter
compensation, and supply chain traceability. This paper describes the STEP-NC DLL and
its applications.

Introduction
Today shop machine tools are programmed using languages that describe movements as
Goto (G) codes and machine functions as Machine (M) codes. The languages are very
primitive and vendor specific. A similar confusion of languages once existed for
computer printers. In the mid to late 80’s these languages were super-ceded by a more
descriptive language called Postscript. This language allowed the vendors to hide their
codes inside the printers and allowed the users to program using one standard language.

Industry has wanted to replace the RS274D language for M and G codes with something
more descriptive for more than 20 years. One barrier has been the level of computation
necessary to translate three dimensional coordinates and orientations into displacements
for motors controlling the five axes of a machine tool. Until recently it was not cost
effective to perform these translations on the CNC even though doing so would make the
machine more flexible.

Many projects have shown that shop floor machines can be made easier to operate if
more information is sent to the CNC [1]. For example, the process used to prove-out a
new CNC program can be stressful and labor intensive. An operator has to be ready to
stop the machine if the cutting tool is about to damage something. If a model of the
product was sent to the machine along with models of the fixtures, cutting tools and other
variables, then the CNC could check for these collisions using geometry intersection
algorithms.

The algorithms to perform a geometry intersection are already implemented in
CAD/CAM systems. These systems run the tool paths against an evolving model of the
part and make sure that none of the design constraints of the part are violated while also
checking for collisions. What is needed is a method to transfer the information from the
CAD/CAM systems to the CNC controls so that the simulations can be run on the CNC
as well.

 Manufacturing Integration using the STEP-NC DLL

 2 of 14

The first standards for CAD/CAM data transfer were developed in the 1980’s. Initially
there were national and focused on geometric data exchange. They included SET in
France, VDAFS in Germany and the Initial Graphics Exchange Specification (IGES) in
the USA. Later a grand unifying effort was started under the International Organization
for Standardization (ISO). The new standard was to be for all aspects of technical product
data and named STEP for the Standard for Product Model Data [2].

Figure 1. Information Defined by STEP for manufacturing

Today nearly every CAD system supports a STEP protocol for geometry data exchange.
In the USA the protocol most widely used is AP-203 and in Europe it is AP-214. The two
protocols are harmonized and can be processed by common software so the choice does
not matter to most CAD vendors. In the late 90’s this success allowed a European,
Korean and Japanese team to begin developing a new 3D CNC programming language
called STEP-NC [3]. The new language uses the geometry of STEP to define how a
CNC machine should remove material volumes from a part. There are now more then 40
STEP Applications Protocols (see Appendix A). Figure 1 illustrates the range of
information defined in these protocols for manufacturing applications.

This paper describes a Dynamic Link Library (DLL) for STEP-NC that can read, write,
and process the data shown in Figure 1. This is the first time that a single library has been
able to read, write and process manufacturing data with this range of complexity.
Therefore, the STEP-NC DLL represents a new type of data pipe that can be used to
connect design to manufacturing to enable more powerful manufacturing applications.

 Manufacturing Integration using the STEP-NC DLL

 3 of 14

The next section describes how STEP translators are implemented. The third section
gives a brief history of the efforts to make STEP applications easier to program. The
fourth section gives an overview of the new STEP-NC DLL. The fifth section describes
its implementation so that other vendors can implement competing systems. The sixth
section describes the shop floor application testing that has taken place over the last three
years. The seventh section summarizes the programming properties enabled by the DLL.
The last section contains concluding remarks.

Overview of the STEP Implementation Methods
To implement a STEP translator the software developer needs to understand three things.

1. The first and most important is the scope and functionality of the Application
Protocol. Each AP is divided into units of functionality whose information
requirements are described by application objects. For a large standard there can
be many objects. For example, there are 41 application objects in the AP-203
edition 1 CAD geometry standard, 237 application objects in the AP-224 process
planning standard and 416 application objects in the AP-238 CNC machining
standard.

2. The second is how each application object is represented as a set of entities

defined by the STEP integrated resources. The integrated resources give STEP
data the flexibility to grow as it moves across the engineering life cycle. For
example, the value 5 in conceptual design becomes 5 millimeters in CAD, then 5
millimeters plus or minus 1 in process planning, then 5 millimeters plus or minus
1 millimeter as referenced from this datum plane on the CMM, and so on.

3. The third is how to encode the information as a data stream. In STEP the

EXPRESS language is used to define all of the entities in the standard. EXPRESS
has a very powerful inheritance model and a robust rule definition language. The
powerful inheritance model is necessary because the STEP standards need to
define entities for 3D geometry. The rule language is necessary so that all of the
linkages required to represent an application object can be defined and checked. A
file format for EXPRESS called Part 21 describes how entities with an EXPRESS
definition are encoded in ASCII. Another file format called Part 28 describes how
to encode the entities in XML. Programming tool kits usually manage this aspect
of STEP implementation.

Figure 2a shows a mapping for one of the attributes of an Application object [2]. Figure
2b gives the EXPRESS language definition for some of the entities used in AP-238.

The mapping to the entities seems straight forward because all that is required is the
mechanical translation of the mappings. However, this has to be done for all of the
application objects. For most programmers this is too much. They are already having a lot
of trouble understanding exactly how to use the application objects and to then have to
break them down into about 5 entities each and meet the requirements of about 10 value

 Manufacturing Integration using the STEP-NC DLL

 4 of 14

and relationship constraints is too difficult. They become lost. Debugging the data is the
biggest problem because searching for the cause of an error is like searching for a needle
in a haystack. Only a few can handle the complexity and most of them are heartily glad
when they can move on to a new project.

Figure 2. STEP Mapping definitions and Entity definitions in AP-238.

A brief History of efforts to make STEP programming easier
STEP was a success at modeling product geometry. Today, nearly every CAD system
includes an AP-203 or AP-214 translator.

However, after AP-203 was implemented it became clear that the larger information
models were going to encounter greater implementation problems and a number of
increasingly radical efforts were initiated to overcome these problems. The first were
incremental in nature. They assumed that STEP implementation would be easier if
standards were defined for manipulating STEP data. A series of such standards were
defined for C, C++, IDL and Java [5]. However, the solution was incremental and time
has shown that it was not sufficient.

The second solutions omitted the mapping from the application objects to the integrated
entities. In STEP terminology the model of the application objects is called the
Application Requirements Model (ARM), and the mapped model is called the
Application Interpreted Model (AIM). Only the AIM is allowed to be implemented in a
STEP standard, but sister standards have been developed that do not have this
requirement.

 Manufacturing Integration using the STEP-NC DLL

 5 of 14

For example, there are two models in the building and construction domain called the
IFC model for the Industry Foundation Classes and the CIS model for the CIM Integrated
Steel model respectively. Initially these standards were more popular than the ir
equivalent STEP standards (AP-225 and AP-232) but now they are encountering
problems as they try to extend themselves into second editions. The issue is that their
second editions are not upward compatible with the first editions. For the STEP standards
the same technology that allows them to share data across multiple applications domains
also allows them to grow into second editions without requiring changes to existing
applications.

The third set of solutions is the most radical. They try to develop better data sharing
architectures using more mainstream technologies such as XML Schema. So far they
have not succeeded because they are not able to model all aspects of manufacturing data.
For example, XML Schema does not model inheritance relationships, and three-
dimensional geometry with its many inheritance relationships is at the heart of STEP.
What is needed is a way for these mainstream modeling languages to become more
powerful without gaining the complexity that stopped the wider world from adopting
EXPRESS in the first place.

Architecture of the STEP-NC DLL
For design to manufacturing data integration we need a solution that spans the CAD,
CAM, CNC and CMM application domains. For the reasons described in the last section
we cannot avoid the complexity, but STEP is an International standard so once a solution
has been implemented it can be used for many years. Figure 3 shows the functionality of
our solution. We implemented a Microsoft Dynamic Link Library (DLL) that uses a three
schema architecture to manage complexity by dividing the problem into levels of
abstraction. The three schemas are the AIM schema of STEP, the ARM schema of STEP
and a new interface schema.

Figure 3. Functionality of the STEP-NC DLL

CAD CNC CMM

STEP-NC dll

CAM

APT Feature Process Tolerance

Design Plan Machine

AP-203 AP-238 AP-238

Information
flow

Function call to an
interface in the dll

Finder, Query, Eraser, Nurbs

 Manufacturing Integration using the STEP-NC DLL

 6 of 14

The interface schema is similar to the application view schema of database systems. Like
a view schema, the goal is to create a layer that is safe and easy to use. Easy means that
each interface defines something that is easy to understand within the context of the
application. Safe means each interface defines operations that take the database from one
valid state to another valid state, as defined by the EXPRESS schema of the relevant
Application Protocol.

There can be many interfaces at the interface level. Unlike the ARM and AIM schemas
they do not have to be defined slowly and carefully to ensure consistency and coverage
without redundancy. Instead like a database view they can be defined in a more casual
fashion to meet the currently understood requirements of an application. One of the key
qualities is that an interface can always be replaced without harming the rest of the
system.

Figure 3 shows the interfaces defined in the DLL for CAD, CAM, CNC and CMM
applications. So far the APT interface has been tested using the Catia, UGS NX and
Pro/engineer CAD/CAM systems. The feature interface has been tested using the
Mastercam system. The process interface has been tested using the Siemens, Fanuc and
Heidenhain CNC systems, and the Tolerance interface has been tested using the DMIS
measurement language and the Zeiss CMM system. The other interfaces, finder, query,
eraser and Nurbs are generic, and have been tested by all of the systems. Table 1
summarizes the roles of the interfaces

Table 1. The interfaces in the DLL.
APT is used to define the geometries of the product model. This includes the
geometry of the tool paths which can be extracted from APT-CL files, RS274D
files or by direct translators, and the geometry of the workpieces including the
rawpiece, the final workpiece, the fixtures, and the cutting tools.
Feature is used to define manufacturing features such as pockets, slots and round
holes. The features can be defined by geometry, by parametric quantities such as
length and width, and by both.
Process is used to create enhanced process data for milling, drilling and turning
operations by applications that are working directly with a CAM system.
Tolerance is used to create geometric tolerance and dimension data and to
describe measurement methods for testing those tolerances and dimensions.
Finder is used to find all of the data.
Query is also used to find all of the data but unlike finder which can only return
nominal values, query uses a more complex interface to also return the plus/minus
limits of toleranced values.
Nurbs is used to convert geometric surfaces into Nurbs for display and to enable
geometric calculations on those surfaces and their related tool paths.
Eraser deletes data.

As is allowed by the architecture, there is some redundancy between the interfaces. For
example, many of the operations defined by the finder interface are duplicated and
enhanced in the query interface by the addition of tolerance information. Thus query is

 Manufacturing Integration using the STEP-NC DLL

 7 of 14

more complete, but Finder is easier to use because information that can be accessed in
one function call in Finder can take several in Query.

Implementation of the DLL
Figure 4 shows the internal architecture of the DLL. As shown the top layer of the DLL is
a set of interfaces managed as Microsoft COM components. These interfaces each define
a set of operations appropriate to the scope of an application. Appendix B lists the
operations in the Feature interface.

The next level of the system consists of C++ code. This code implements the operations.
The operations are designed to be transactions that take the database from one consistent
state to another consistent state. Each operation queries, makes or modifies one or more
application objects. Most operations work on several application objects because this is
necessary to ensure consistency at the end of the operation. For example, an operation
cannot create a workingstep without also making a feature because the STEP-NC model
requires every workingstep to have a feature.

As noted in the previous sections making all of the entities required for all of the
application objects is extremely tedious when done by hand. Automating the production
of this code is one of the key innovations of the DLL. To do this we implemented a
parser that reads the STEP mapping tables as shown in Figure 2a and generates C++ code.
A STEP expert then annotates this data with information about the required data sharing
(which is defined in the STEP integrated resources) and the result is a set of C++ classes
containing the methods necessary to create each attribute of each application object.

Figure 4. Internal Architecture of the DLL.

The code generated for the mappings is applied to an EXPRESS data management library.
This library was previously implemented over a period of ten years and contains a large,

AP-203, AP-219, AP-224, AP-238, AP-240 STEP-Manufacturing
Schema (EXPRESS)

workpiece

EXPRESS programming library

workingstep toolpath hole

ROSE (C++)

Etc.

Function library

Eraser interface Feature interface Process interface

Finder interface Query interface

APT interface

Mapping modules
(generated C++)

Hand written C++

Microsoft managed
code (IDL)

AIM

ARM

Tolerance interface Nurbs interface

 Manufacturing Integration using the STEP-NC DLL

 8 of 14

robust set of functions for manipulating entities defined by EXPRESS. It has been used to
implement STEP translators for many years with an estimated one million copies being
deployed in various CAD stations world wide [5].

For the STEP-NC DLL a schema was developed to unify the data allowed by the STEP
Manufacturing Application Protocols. This schema is called the STEP-Manufacturing
schema. Currently it is a unification of the definitions given in AP-203, AP-219, AP-224,
AP-238 and AP-240. Other Application Protocols can be added as new domains are
added to the integration scope of the DLL.

Testing
Development of the STEP-NC DLL began at the end of the Model Driven Intelligent
Control for Manufacturing (MDICM) program in 2004. The first round of testing in
February 2005 showed how the DLL can be used to drive machining programs for five
axis controllers. Two controllers, one using AB tool tilt and the other using BC table tilt,
were run using data taken from four CAM systems. The demonstration while basic was
important because if STEP-NC is to replace RS274D in the same way that Postscript
replaced RS272, then it must be machine independent. Figure 5 illustrates this
demonstration.

Figure 5. February 2005 Interoperability Demonstration

The second round of testing in June 2006 showed how a site can machine a part using a
program created at multiple sites. A feature driven three-axis machining program for
roughing was created using Mastercam, and a tool path driven five axis machining
program for finishing was created using Catia. The two programs were combined using
the STEP-NC DLL and used to machine the part at a third site.

STEP-NC
XML

 Manufacturing Integration using the STEP-NC DLL

 9 of 14

The third round of testing in June 2007 showed how the same part can be machined and
measured at multiple sites. For this round of testing support for measurement machines
was added to the DLL by adding commands to read tolerance data from AP-203 edition 2
and plan probing operations. An export interface was then added to the DLL to generate
DMIS measurement codes for off machine probing, and Renishaw probing codes for on-
machine probing.

The fourth round of testing in 2008 will demonstrate simulation and verification using the
DLL. In this round of tests the plan is to show: just in time generation of optimal speeds
and feeds; just in time generation of five axis cutter compensation codes from part
geometry; and the run time tracing of machining information in a form that can be
understood at a later time by the customer of a machine shop.

Properties of the DLL
The success of the DLL can be attributed to four properties enabled by the three schema
architecture. The four properties are Automation, Consistency, Isolation and
Documentation. Properties with similar names were enabled for database systems by its
three schema architecture [4].

Table 2 summarizes the four properties. The automation property means the automation
of the mappings from the ARM to the AIM using a code generator. The mappings were a
frequent source of errors in traditional STEP implementation. In fact, so frequent tha t
they often took away all the time of the programmer so he or she did not have any for the
semantically far more important ARM level mistakes. Using automation to generate the
mappings has considerably reduced this number of errors.

Table 2. The Four Properties enabled by the Three Schemas
Property Advantage Implementation
Automation Greater accuracy and far

less effort
A mapping table parser is used to convert
the STEP mapping tables to C++ code. A
STEP expert then annotates with the
necessary rules for data sharing

Consistency Easier identification of the
operation that was the
original source of an error

Require that every operation takes the
database from one valid state (as defined
by the EXPRESS model) to another valid
state.

Isolation Easier identification of the
function calls necessary to
create a data item.

Require each operation to complete its
data in a single function call so that the
programmer does not have to navigate
through long data sequences to find the
necessary data handles.

Documentation Easier understanding of
the data in a file and easier
identification of missing
or invalid data.

Add comments to the STEP file to show
how each property of each ARM object is
represented in that file.

 Manufacturing Integration using the STEP-NC DLL

 10 of 14

The consistency property is enabled by requiring the operations that modify data to take
the database from one valid state to another valid state. Within the DLL consistency is
enabled by waiting for a complete set of information to be available before adding data to
the database. For example, a change to the coolant value does not immediately result in a
new coolant object being added to the database. Instead the DLL waits until a new tool
path that uses that coolant value is ready for insertion and then adds the coolant value to
the database. Consistency is desirable because in the event of an error the problem can be
traced back to the first operation that put the database into an inconsistent state.

The isolation property is enabled by requiring each operation to perform its function
using a single function call. Many object oriented systems have operations that require
their functions to be given a handle to the results of other functions. The STEP
information models are so complex that this requirement becomes a major source of
frustration to programmers. For example, consider a drilling operation. One of the factors
that must be tested in this operation is status of the bottom of the hole. If the sequence
starts with a handle to the working step, then the STEP-NC DLL will find out the
required status using a single function call to the method GetHoleBottomType of the
Finder interface, but a handle based interface such as the ones provided by the EXPRESS
tool kits will require:

1. Six function calls to reach the handle of the round hole.
2. Five function calls to reach the handle of the hole bottom.
3. One function call to decode the type of the hole bottom.

Obviously, each function must be given the right arguments. Therefore, in writing this
code there is much searching through the standards to check the requirements and the net
effect is like trying to solve a crossword puzzle with limited clues.

The requirement for isolation means that some of the functions in the DLL are relatively
wide, so it can be argued that the DLL replaces excessive depth with excessive width.
However, two factors mitigate this problem. The first is the IntelliSense gadget of the
Microsoft Integrated Development Environment (IDE) and other environments. This
gadget shows the programmer how to complete a function call. Therefore, the necessary
documentation is provided automatically. The other mitigating factor is the familiarity of
the programmer with the application domain. For example, the parameters required to
make a round hole are well known so even if there are a lot of arguments, they can be
deciphered by giving them intelligent names such as “diameter” and “depth”. It is very
difficult to give a sequence of twelve depth oriented function calls meaningful names.

The last property is Documentation. This property is inspired by XML which showed the
value of self documenting data. Documentation is very important because efficient
debugging requires the programmer to rapidly determine what objects are in the data and
whether or not those objects have all the required properties. The STEP-NC DLL
implements documentation by adding comments to the Part 21 (ASCII) and Part 28
(XML) formats. Figure 6 illustrates. Figure 6a shows some raw uncommented STEP data.

 Manufacturing Integration using the STEP-NC DLL

 11 of 14

In this data the “#” symbol is used to denote both an entity identifier and an entity
reference. Clearly there are few clues as to what this data represents though it can be
deciphered with effort.

Figure 6b shows the comments added to the data by the DLL to show that this data
cluster represents a machine_functions object for milling processes and that this object
has the properties shown. The new data can be recognized at a glance. In the header the
sequence of numbers shows the sequence of entities used in each mapping. As well as
making the correctness of the mapping easier to check, the sequence tells the system how
to cluster the entities in the representation of the object. In this respect the illustration
given in Figure 6a is misleading because all of the entities in the object have been
clustered together. In a “raw” Part 21 or Part 28 file without comments there is no reason
to cluster them in this way and there could be 100,000 or more entity instances between
two related data items in a file.

Figure 6. Better Documentation.

Conclusion
Collaboration is extremely important to industry because it leads to economies of scale.
More efficient data exchange means more efficient collaboration. The goal of the STEP-
NC DLL is to enable collaboration for technical product data by integrating the
information required for CAD, CAM, CNC and CMM applications.

 Manufacturing Integration using the STEP-NC DLL

 12 of 14

The information of these domains is already available in many different files with
different formats. The STEP-NC DLL makes it possible for an application to put these
files together. Shop floor manufacturing applications can then deliver new functionality
to end users. Examples include just in time simulation and verification, integrated
machining and measurement, five axis cutter compensation and manufacturing
traceability.

The STEP-NC DLL enables these applications because it allows the geometry and
tolerances of a product to be aligned with the operations and tool paths of a process to
create an integrated data set. Previously these data sets belonged to different systems. The
geometry and tolerance data was created by a CAD system, and the process and tool path
data was created by a CAM system. An application that wanted to use both had to resolve
the differences between the coordinates and units of the two systems and then infer all of
the connections. For example, it had to align the geometry of the part, which is usually in
the coordinate space of the product, against the geometry of the tool paths which is
usually in the coordinate space of the machine, and then infer which face of the part was
being machined by each tool path in order to check its validity.

With the STEP-NC DLL, an application can be written to integrate and connect the data
at the data source, so that intelligent shop floor applications can deliver new value to the
operators. For example:

• Connecting the tool path data to the geometry data means an intelligent CNC
application can detect gouges to the part geometry.

• Connecting the process to the geometry means an application can optimize the
speeds and feeds to minimize machining time or maximize cutting tool life.

• Connecting the machining set-up to the part geometry means an application can
implement five-axis cutter compensation for tool wear.

• Connecting the tolerances to the process means an on-machine inspection
application can check for errors and discrepancies at the end of each operation
instead of waiting for the part to be transferred to an inspection machine at the
end of the machining.

• Connecting the CAD part to the CAM process means a traceability application
can report back on the quality of the machining process to the product designer.

The STEP-NC DLL uses the STEP standards to define its data. Since STEP was started
in 1984, the STEP committees have achieved several notable successes. For example,
they have a procedure in place that allows global consensus to be achieved on the
required information content, they have a methodology that allows all the data
requirements for a new standard to be identified, they have an architecture that allows the
whole life cycle of a product to be modeled, and they have developed a standard for
geometry that is supported by nearly every CAD and CAM vendor.

However in recent years these successes have been marred by the slow rate of
implementation for the attribute rich manufacturing protocols. As the STEP Application
Protocols have grown bigger, the rate of implementation has grown slower because of the
complexity of writing code for hundreds of objects that each have to be mapped into

 Manufacturing Integration using the STEP-NC DLL

 13 of 14

thousands of connected entities. The first protocols only had 41 object types. Some of the
recent application protocols have as many as 700 object types.

The STEP-NC DLL uses a three schema architecture to manage complexity using
abstraction. The DLL has been used to read and write CAD, CAM, CNC and CMM data
defined by a wide range of commercial off the shelf systems. For the first time one
library has been able to process data from multiple manufacturing application domains.

We attribute the success of the DLL to the four properties enabled by the architecture:
Automation, Consistency, Isolation and Documentation. The automation property
allowed us to rapidly generate code for the DLL that is safe and easy to use. The
consistency property allowed us to quickly identify the operation that was the original
source of an error. The Isolation property allowed us to complete an operation in one
function call instead of multiple inter-related nested function calls. The Documentation
property allowed us to rapidly debug errors in the data.

The STEP-NC DLL has been tested in multiple scenarios over the last three years.
Starting in 2001 with interoperability testing of tool paths, the scenarios have shown how
the DLL can be used to implement the integrated simulation, machining, measurement
and tracing of manufacturing operations. The next stage is for the key vendors of the
manufacturing community to start using the DLL to connect their applications to the data
defined by the standards.

REFERENCES
[1] Suh, S.H., Cho, J.H., and Hong, H.D., 2001, “On the architecture of intelligent STEP -compliant CNC,”

Int’l J. Computer Integrated Manufacturing, Vol. 15, No. 2, January 2002, pp. 168-177.
[2] ISO 10303-1:1994 Industrial automation systems and integration Product data representation and

exchange - Overview and Fundamental Principles, International Standard, ISO TC184/SC4, 1994.
[3] ISO 14649-1:2001 Industrial automation systems and integration Physical Device Control-Part 1:

Overview and Fundamental Principles, Draft International Standard ISO TC184/SC4, 2001.
[4] P.A. Bernstein, V. Hadzilacos, and N. Goodman. “Concurrency Control and Recovery in Database

Systems ”. Addison-Wesley, 1987.
[5] M. Ha rdwick, D.L.Spooner, T. Rando, K.C. Morris , “Sharing manufacturing information in virtual

enterprises”, Communications of the ACM, Volume 39, No. 2, 1996.

APPENDIX A THE STEP APPLICATION PROTOCOLS
Each Application Protocol defines a data exchange standard. Only some of the protocols
have an impact on end-users. Others establish a capability that will be harvested by a
subsequent standard.

AP 201 Explicit Drafting
AP 202 Associative Drafting
AP 203 Configuration Controlled Design
AP 204 Mechanical Design Using Boundary

Representation
AP 205 Mechanical Design Using Surface

Representation
AP 206 Mechanical Design Using Wireframe

Representation
AP 207 Sheet Metal Dies and Blocks

AP 208 Life Cycle Product Change Process
AP 209 Design Through Analysis of Composite and

Metallic Structures
AP 210 Electronic Printed Circuit Assembly, Design

and Manufacturing
AP 211 Electronics Test Diagnostics and

Remanufacture
AP 212 Electrotechnical Plants
AP 213 Numerical Control Process Plans for

Machined Parts

 Manufacturing Integration using the STEP-NC DLL

 14 of 14

AP 214 Core Data for Automotive Mechanical
Design Processes

AP 215 Ship Arrangement
AP 216 Ship Molded Forms
AP 217 Ship Piping
AP 218 Ship Structures
AP 219 Dimensional Inspection Process Planning

for CMMs
AP 220 Printed Circuit Assembly Manufacturing

Planning
AP 221 Functional Data and Schematic

Representation for Process Plans
AP 222 Design Engineering to Manufacturing for

Composite Structures
AP 223 Exchange of Design and Manufacturing

DPD for Castings
AP 224 Mechanical Product Definition for Process

Planning

AP 225 Structural Building Elements Using Explicit
Shape Rep

AP 226 Shipbuilding Mechanical Systems
AP 227 Plant Spatial Configuration
AP 228 Building Services
AP 229 Design and Manufacturing Information for

Forged Parts
AP 230 Building Structure frame steelwork
AP 231 Process Engineering Data
AP 232 Technical Data Packaging
AP 233 Systems Engineering Data Representation
AP 234 Ship Operational logs, records and messages
AP 235 Materials Information for products
AP 236 Furniture product and project
AP 237 Computational Fluid Dynamics
AP 238 Integrated CNC Machining
AP 239 Product Life Cycle Support
AP-240 Process Planning

APPENDIX B Functions in the Feature Interface
Functions in the Feature interface of the DLL as of June 2006.

void OpenWorkpiece(LPCTSTR file_name, LPCTSTR piece_name, long force_p21);
void Inches();
void Millimeters();
void SetDirection(double i, double j, double k, double a, double b, double c);
void SetLocation(double x, double y, double z);
void AddFace(long ws_id, long face_id);
void RemoveFace(long ws_id, long face_id);
void LineTo(LPCTSTR label, double x, double y, double z);
void Arc(LPCTSTR label, double x, double y, double z, double cx, double cy, double cz, double radius, long ccw);
long ClosedRectangularPocket(long ws_id, LPCTSTR name, double depth, double length, double width, double
orthogonal_radius);
long ClosedCircularPocket(long ws_id, LPCTSTR name, double depth, double diameter);
long ClosedGeneralPocket(long ws_id, LPCTSTR name, double depth);
long OpenPartialCircularPocket(long ws_id, LPCTSTR name, double depth, double radius, double sweep_angle);
long OpenGeneralPocket(long ws_id, LPCTSTR name, double depth);
long RoundHole(long ws_id, LPCTSTR name, double depth, double diameter);
long HoleFlatBottom(long feature_id);
long HoleConicalBottom(long feature_id, double tip_angle, double tip_radius);
long HoleFlatWithRadiusBotttom(long feature_id, double corner_radius);
long HoleSphericalBottom(long feature_id, double radius);
long ClosedRectangularOutsideProfile(long ws_id, LPCTSTR name, double depth, double length, double width);
long ClosedCircularOutsideProfile(long ws_id, LPCTSTR name, double depth, double diameter);
long PartialCircularOutsideProfile(long ws_id, LPCTSTR name, double depth, double radius, double sweep_angle);
long LinearOutsideProfile(long ws_id, LPCTSTR name, double depth, double length);
long ClosedGeneralOutsideProfile(long ws_id, LPCTSTR name, double depth);
long OpenGeneralOutsideProfile(long ws_id, LPCTSTR name, double depth);
long PocketFlatBottom(long feature_id, double planar_radius);
long PocketRadiusedBottom(long feature_id, double radius, double x, double y, double z);
void QualifyDepth(long pocket_id, double lower, double upper);
long RectangularBoss(long feature_id, LPCTSTR name, double height, double length, double width);
long CircularBoss(long feature_id, LPCTSTR name, double height, double diameter);
long GeneralBoss(long feature_id, LPCTSTR name, double height);
long PlanarFace(long ws_id, LPCTSTR name, double depth, double length, double width);
void Reset();
void OpenNewWorkpiece(LPCTSTR file_name);
void Shutdown();
long CompoundFeature(long ws_id, LPCTSTR name);
void CompoundAddFeature(long compound_id, long feature_id);
void WorkingstepAddFinalFeature(long ws_id, long feature_id);

